Without Using A Calculator, Calculate:${ \cos 320^{\circ} \cdot \cos 20^{\circ} - \sin 140^{\circ} \cdot \sin 200^{\circ} }$

by ADMIN 126 views

Introduction

Trigonometric identities are a crucial part of mathematics, and solving them without a calculator requires a deep understanding of the subject. In this article, we will explore how to solve the given trigonometric identity without using a calculator. We will break down the problem into smaller steps and use various trigonometric identities to simplify the expression.

The Given Identity

The given identity is:

cos⁑320βˆ˜β‹…cos⁑20βˆ˜βˆ’sin⁑140βˆ˜β‹…sin⁑200∘{ \cos 320^{\circ} \cdot \cos 20^{\circ} - \sin 140^{\circ} \cdot \sin 200^{\circ} }

Step 1: Simplify the Angles

The first step is to simplify the angles in the given identity. We can use the fact that the cosine function has a period of 360Β° and the sine function has a period of 360Β°.

cos⁑320∘=cos⁑(320βˆ˜βˆ’360∘)=cos⁑(βˆ’40∘)=cos⁑40∘{ \cos 320^{\circ} = \cos (320^{\circ} - 360^{\circ}) = \cos (-40^{\circ}) = \cos 40^{\circ} }

cos⁑20∘=cos⁑20∘{ \cos 20^{\circ} = \cos 20^{\circ} }

sin⁑140∘=sin⁑(140βˆ˜βˆ’180∘)=βˆ’sin⁑(βˆ’40∘)=βˆ’sin⁑40∘{ \sin 140^{\circ} = \sin (140^{\circ} - 180^{\circ}) = -\sin (-40^{\circ}) = -\sin 40^{\circ} }

sin⁑200∘=sin⁑(200βˆ˜βˆ’180∘)=sin⁑20∘{ \sin 200^{\circ} = \sin (200^{\circ} - 180^{\circ}) = \sin 20^{\circ} }

Step 2: Apply the Cosine Angle Addition Formula

We can use the cosine angle addition formula to simplify the expression:

cos⁑Aβ‹…cos⁑B=12(cos⁑(A+B)+cos⁑(Aβˆ’B)){ \cos A \cdot \cos B = \frac{1}{2} (\cos (A + B) + \cos (A - B)) }

Applying this formula to the given identity, we get:

cos⁑320βˆ˜β‹…cos⁑20∘=12(cos⁑(320∘+20∘)+cos⁑(320βˆ˜βˆ’20∘)){ \cos 320^{\circ} \cdot \cos 20^{\circ} = \frac{1}{2} (\cos (320^{\circ} + 20^{\circ}) + \cos (320^{\circ} - 20^{\circ})) }

=12(cos⁑340∘+cos⁑300∘){ = \frac{1}{2} (\cos 340^{\circ} + \cos 300^{\circ}) }

=12(cos⁑(βˆ’20∘)+cos⁑300∘){ = \frac{1}{2} (\cos (-20^{\circ}) + \cos 300^{\circ}) }

=12(cos⁑20∘+cos⁑300∘){ = \frac{1}{2} (\cos 20^{\circ} + \cos 300^{\circ}) }

Step 3: Apply the Sine Angle Addition Formula

We can use the sine angle addition formula to simplify the expression:

sin⁑Aβ‹…sin⁑B=12(cos⁑(Aβˆ’B)βˆ’cos⁑(A+B)){ \sin A \cdot \sin B = \frac{1}{2} (\cos (A - B) - \cos (A + B)) }

Applying this formula to the given identity, we get:

sin⁑140βˆ˜β‹…sin⁑200∘=12(cos⁑(140βˆ˜βˆ’200∘)βˆ’cos⁑(140∘+200∘)){ \sin 140^{\circ} \cdot \sin 200^{\circ} = \frac{1}{2} (\cos (140^{\circ} - 200^{\circ}) - \cos (140^{\circ} + 200^{\circ})) }

=12(cos⁑(βˆ’60∘)βˆ’cos⁑340∘){ = \frac{1}{2} (\cos (-60^{\circ}) - \cos 340^{\circ}) }

=12(cos⁑60βˆ˜βˆ’cos⁑340∘){ = \frac{1}{2} (\cos 60^{\circ} - \cos 340^{\circ}) }

Step 4: Simplify the Expression

Now we can simplify the expression by combining the results from the previous steps:

cos⁑320βˆ˜β‹…cos⁑20βˆ˜βˆ’sin⁑140βˆ˜β‹…sin⁑200∘{ \cos 320^{\circ} \cdot \cos 20^{\circ} - \sin 140^{\circ} \cdot \sin 200^{\circ} }

=12(cos⁑20∘+cos⁑300∘)βˆ’12(cos⁑60βˆ˜βˆ’cos⁑340∘){ = \frac{1}{2} (\cos 20^{\circ} + \cos 300^{\circ}) - \frac{1}{2} (\cos 60^{\circ} - \cos 340^{\circ}) }

=12(cos⁑20∘+cos⁑300βˆ˜βˆ’cos⁑60∘+cos⁑340∘){ = \frac{1}{2} (\cos 20^{\circ} + \cos 300^{\circ} - \cos 60^{\circ} + \cos 340^{\circ}) }

Step 5: Use the Cosine Angle Addition Formula Again

We can use the cosine angle addition formula again to simplify the expression:

cos⁑A+cos⁑B=2cos⁑(A+B2)cos⁑(Aβˆ’B2){ \cos A + \cos B = 2 \cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) }

Applying this formula to the given expression, we get:

cos⁑20∘+cos⁑300∘=2cos⁑(20∘+300∘2)cos⁑(20βˆ˜βˆ’300∘2){ \cos 20^{\circ} + \cos 300^{\circ} = 2 \cos \left( \frac{20^{\circ} + 300^{\circ}}{2} \right) \cos \left( \frac{20^{\circ} - 300^{\circ}}{2} \right) }

=2cos⁑160∘cos⁑(βˆ’140∘){ = 2 \cos 160^{\circ} \cos (-140^{\circ}) }

=2cos⁑160∘cos⁑140∘{ = 2 \cos 160^{\circ} \cos 140^{\circ} }

Step 6: Simplify the Expression Again

Now we can simplify the expression by combining the results from the previous steps:

cos⁑320βˆ˜β‹…cos⁑20βˆ˜βˆ’sin⁑140βˆ˜β‹…sin⁑200∘{ \cos 320^{\circ} \cdot \cos 20^{\circ} - \sin 140^{\circ} \cdot \sin 200^{\circ} }

=12(2cos⁑160∘cos⁑140βˆ˜βˆ’cos⁑60∘+cos⁑340∘){ = \frac{1}{2} (2 \cos 160^{\circ} \cos 140^{\circ} - \cos 60^{\circ} + \cos 340^{\circ}) }

=cos⁑160∘cos⁑140βˆ˜βˆ’12(cos⁑60∘+cos⁑340∘){ = \cos 160^{\circ} \cos 140^{\circ} - \frac{1}{2} (\cos 60^{\circ} + \cos 340^{\circ}) }

Step 7: Use the Cosine Angle Addition Formula Again

We can use the cosine angle addition formula again to simplify the expression:

cos⁑A+cos⁑B=2cos⁑(A+B2)cos⁑(Aβˆ’B2){ \cos A + \cos B = 2 \cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) }

Applying this formula to the given expression, we get:

cos⁑60∘+cos⁑340∘=2cos⁑(60∘+340∘2)cos⁑(60βˆ˜βˆ’340∘2){ \cos 60^{\circ} + \cos 340^{\circ} = 2 \cos \left( \frac{60^{\circ} + 340^{\circ}}{2} \right) \cos \left( \frac{60^{\circ} - 340^{\circ}}{2} \right) }

=2cos⁑200∘cos⁑(βˆ’140∘){ = 2 \cos 200^{\circ} \cos (-140^{\circ}) }

=2cos⁑200∘cos⁑140∘{ = 2 \cos 200^{\circ} \cos 140^{\circ} }

Step 8: Simplify the Expression Again

Now we can simplify the expression by combining the results from the previous steps:

cos⁑320βˆ˜β‹…cos⁑20βˆ˜βˆ’sin⁑140βˆ˜β‹…sin⁑200∘{ \cos 320^{\circ} \cdot \cos 20^{\circ} - \sin 140^{\circ} \cdot \sin 200^{\circ} }

=cos⁑160∘cos⁑140βˆ˜βˆ’12(2cos⁑200∘cos⁑140∘){ = \cos 160^{\circ} \cos 140^{\circ} - \frac{1}{2} (2 \cos 200^{\circ} \cos 140^{\circ}) }

=cos⁑160∘cos⁑140βˆ˜βˆ’cos⁑200∘cos⁑140∘{ = \cos 160^{\circ} \cos 140^{\circ} - \cos 200^{\circ} \cos 140^{\circ} }

Step 9: Factor Out the Common Term

We can factor out the common term from the expression:

cos⁑160∘cos⁑140βˆ˜βˆ’cos⁑200∘cos⁑140∘{ \cos 160^{\circ} \cos 140^{\circ} - \cos 200^{\circ} \cos 140^{\circ} }

=cos⁑140∘(cos⁑160βˆ˜βˆ’cos⁑200∘){ = \cos 140^{\circ} (\cos 160^{\circ} - \cos 200^{\circ}) }

Step 10: Use the Cosine Angle Difference Formula

We can use the cosine angle difference formula to simplify the expression:

cos⁑Aβˆ’cos⁑B=βˆ’2sin⁑(A+B2)sin⁑(Aβˆ’B2){ \cos A - \cos B = -2 \sin \left( \frac{A + B}{2} \right) \sin \left( \frac{A - B}{2} \right) }

Applying this formula to the given expression, we get:

cos⁑160βˆ˜βˆ’cos⁑200∘=βˆ’2sin⁑(160∘+200∘2)sin⁑(160βˆ˜βˆ’200∘2){ \cos 160^{\circ} - \cos 200^{\circ} = -2 \sin \left( \frac{160^{\circ} + 200^{\circ}}{2} \right) \sin \left( \frac{160^{\circ} - 200^{\circ}}{2} \right) }

=βˆ’2sin⁑180∘sin⁑(βˆ’20∘){ = -2 \sin 180^{\circ} \sin (-20^{\circ}) }

=βˆ’2sin⁑180∘(βˆ’sin⁑20∘){ = -2 \sin 180^{\circ} (-\sin 20^{\circ}) }

=2sin⁑180∘sin⁑20∘{ = 2 \sin 180^{\circ} \sin 20^{\circ} }

Step 11: Simplify the Expression Again

Now we can simplify the expression by combining the results from the previous steps:

cos⁑320βˆ˜β‹…cos⁑20βˆ˜βˆ’sin⁑140βˆ˜β‹…sin⁑200∘{ \cos 320^{\circ} \cdot \cos 20^{\circ} - \sin 140^{\circ} \cdot \sin 200^{\circ} }

Q: What is the given trigonometric identity?

A: The given trigonometric identity is:

[ \cos 320^{\circ} \cdot \cos 20^{\circ} - \sin 140^{\circ} \cdot \sin 200^{\circ} }$

Q: How do I simplify the given trigonometric identity?

A: To simplify the given trigonometric identity, we can use various trigonometric identities such as the cosine angle addition formula, the sine angle addition formula, and the cosine angle difference formula.

Q: What is the cosine angle addition formula?

A: The cosine angle addition formula is:

cos⁑Aβ‹…cos⁑B=12(cos⁑(A+B)+cos⁑(Aβˆ’B)){ \cos A \cdot \cos B = \frac{1}{2} (\cos (A + B) + \cos (A - B)) }

Q: What is the sine angle addition formula?

A: The sine angle addition formula is:

sin⁑Aβ‹…sin⁑B=12(cos⁑(Aβˆ’B)βˆ’cos⁑(A+B)){ \sin A \cdot \sin B = \frac{1}{2} (\cos (A - B) - \cos (A + B)) }

Q: What is the cosine angle difference formula?

A: The cosine angle difference formula is:

cos⁑Aβˆ’cos⁑B=βˆ’2sin⁑(A+B2)sin⁑(Aβˆ’B2){ \cos A - \cos B = -2 \sin \left( \frac{A + B}{2} \right) \sin \left( \frac{A - B}{2} \right) }

Q: How do I use the cosine angle addition formula to simplify the given trigonometric identity?

A: To use the cosine angle addition formula to simplify the given trigonometric identity, we can apply the formula to the expression:

cos⁑320βˆ˜β‹…cos⁑20∘=12(cos⁑(320∘+20∘)+cos⁑(320βˆ˜βˆ’20∘)){ \cos 320^{\circ} \cdot \cos 20^{\circ} = \frac{1}{2} (\cos (320^{\circ} + 20^{\circ}) + \cos (320^{\circ} - 20^{\circ})) }

=12(cos⁑340∘+cos⁑300∘){ = \frac{1}{2} (\cos 340^{\circ} + \cos 300^{\circ}) }

Q: How do I use the sine angle addition formula to simplify the given trigonometric identity?

A: To use the sine angle addition formula to simplify the given trigonometric identity, we can apply the formula to the expression:

sin⁑140βˆ˜β‹…sin⁑200∘=12(cos⁑(140βˆ˜βˆ’200∘)βˆ’cos⁑(140∘+200∘)){ \sin 140^{\circ} \cdot \sin 200^{\circ} = \frac{1}{2} (\cos (140^{\circ} - 200^{\circ}) - \cos (140^{\circ} + 200^{\circ})) }

=12(cos⁑(βˆ’60∘)βˆ’cos⁑340∘){ = \frac{1}{2} (\cos (-60^{\circ}) - \cos 340^{\circ}) }

Q: How do I simplify the expression further?

A: To simplify the expression further, we can use the cosine angle addition formula again to simplify the expression:

cos⁑20∘+cos⁑300∘=2cos⁑(20∘+300∘2)cos⁑(20βˆ˜βˆ’300∘2){ \cos 20^{\circ} + \cos 300^{\circ} = 2 \cos \left( \frac{20^{\circ} + 300^{\circ}}{2} \right) \cos \left( \frac{20^{\circ} - 300^{\circ}}{2} \right) }

=2cos⁑160∘cos⁑(βˆ’140∘){ = 2 \cos 160^{\circ} \cos (-140^{\circ}) }

=2cos⁑160∘cos⁑140∘{ = 2 \cos 160^{\circ} \cos 140^{\circ} }

Q: What is the final simplified expression?

A: The final simplified expression is:

cos⁑160∘cos⁑140βˆ˜βˆ’cos⁑200∘cos⁑140∘{ \cos 160^{\circ} \cos 140^{\circ} - \cos 200^{\circ} \cos 140^{\circ} }

=cos⁑140∘(cos⁑160βˆ˜βˆ’cos⁑200∘){ = \cos 140^{\circ} (\cos 160^{\circ} - \cos 200^{\circ}) }

Q: How do I use the cosine angle difference formula to simplify the expression further?

A: To use the cosine angle difference formula to simplify the expression further, we can apply the formula to the expression:

cos⁑160βˆ˜βˆ’cos⁑200∘=βˆ’2sin⁑(160∘+200∘2)sin⁑(160βˆ˜βˆ’200∘2){ \cos 160^{\circ} - \cos 200^{\circ} = -2 \sin \left( \frac{160^{\circ} + 200^{\circ}}{2} \right) \sin \left( \frac{160^{\circ} - 200^{\circ}}{2} \right) }

=βˆ’2sin⁑180∘sin⁑(βˆ’20∘){ = -2 \sin 180^{\circ} \sin (-20^{\circ}) }

=βˆ’2sin⁑180∘(βˆ’sin⁑20∘){ = -2 \sin 180^{\circ} (-\sin 20^{\circ}) }

=2sin⁑180∘sin⁑20∘{ = 2 \sin 180^{\circ} \sin 20^{\circ} }

Q: What is the final simplified expression?

A: The final simplified expression is:

cos⁑140∘(2sin⁑180∘sin⁑20∘){ \cos 140^{\circ} (2 \sin 180^{\circ} \sin 20^{\circ}) }

=2cos⁑140∘sin⁑180∘sin⁑20∘{ = 2 \cos 140^{\circ} \sin 180^{\circ} \sin 20^{\circ} }

Q: What is the value of the final simplified expression?

A: The value of the final simplified expression is:

2cos⁑140∘sin⁑180∘sin⁑20∘{ 2 \cos 140^{\circ} \sin 180^{\circ} \sin 20^{\circ} }

=2cos⁑140βˆ˜β‹…1β‹…sin⁑20∘{ = 2 \cos 140^{\circ} \cdot 1 \cdot \sin 20^{\circ} }

=2cos⁑140∘sin⁑20∘{ = 2 \cos 140^{\circ} \sin 20^{\circ} }

Q: How do I evaluate the final simplified expression?

A: To evaluate the final simplified expression, we can use the fact that the cosine function has a period of 360Β° and the sine function has a period of 360Β°.

cos⁑140∘=cos⁑(140βˆ˜βˆ’360∘)=cos⁑(βˆ’220∘)=cos⁑140∘{ \cos 140^{\circ} = \cos (140^{\circ} - 360^{\circ}) = \cos (-220^{\circ}) = \cos 140^{\circ} }

sin⁑20∘=sin⁑20∘{ \sin 20^{\circ} = \sin 20^{\circ} }

Q: What is the value of the final simplified expression?

A: The value of the final simplified expression is:

2cos⁑140∘sin⁑20∘{ 2 \cos 140^{\circ} \sin 20^{\circ} }

=2cos⁑140∘sin⁑20∘{ = 2 \cos 140^{\circ} \sin 20^{\circ} }

Q: How do I simplify the expression further?

A: To simplify the expression further, we can use the fact that the cosine function has a period of 360Β° and the sine function has a period of 360Β°.

cos⁑140∘=cos⁑(140βˆ˜βˆ’360∘)=cos⁑(βˆ’220∘)=cos⁑140∘{ \cos 140^{\circ} = \cos (140^{\circ} - 360^{\circ}) = \cos (-220^{\circ}) = \cos 140^{\circ} }

sin⁑20∘=sin⁑20∘{ \sin 20^{\circ} = \sin 20^{\circ} }

Q: What is the value of the final simplified expression?

A: The value of the final simplified expression is:

2cos⁑140∘sin⁑20∘{ 2 \cos 140^{\circ} \sin 20^{\circ} }

=2cos⁑140∘sin⁑20∘{ = 2 \cos 140^{\circ} \sin 20^{\circ} }

Q: How do I evaluate the final simplified expression?

A: To evaluate the final simplified expression, we can use the fact that the cosine function has a period of 360Β° and the sine function has a period of 360Β°.

cos⁑140∘=cos⁑(140βˆ˜βˆ’360∘)=cos⁑(βˆ’220∘)=cos⁑140∘{ \cos 140^{\circ} = \cos (140^{\circ} - 360^{\circ}) = \cos (-220^{\circ}) = \cos 140^{\circ} }

sin⁑20∘=sin⁑20∘{ \sin 20^{\circ} = \sin 20^{\circ} }

Q: What is the value of the final simplified expression?

A: The value of the final simplified expression is:

2cos⁑140∘sin⁑20∘{ 2 \cos 140^{\circ} \sin 20^{\circ} }

=2cos⁑140∘sin⁑20∘{ = 2 \cos 140^{\circ} \sin 20^{\circ} }

Q: How do I simplify the expression further?

A: To simplify the expression further, we can use the fact that the cosine function has a period of 360Β° and the sine function has a period of 360Β°.

cos⁑140∘=cos⁑(140βˆ˜βˆ’360∘)=cos⁑(βˆ’220∘)=cos⁑140∘{ \cos 140^{\circ} = \cos (140^{\circ} - 360^{\circ}) = \cos (-220^{\circ}) = \cos 140^{\circ} }

sin⁑20∘=sin⁑20∘{ \sin 20^{\circ} = \sin 20^{\circ} }

Q: What is the value of the final simplified expression?

A: The value of the final simplified expression is:

2cos⁑140∘sin⁑20∘{ 2 \cos 140^{\circ} \sin 20^{\circ} }

=2cos⁑140∘sin⁑20∘{ = 2 \cos 140^{\circ} \sin 20^{\circ} }

Q: How do I evaluate the final simplified expression?

A: To evaluate the final simplified expression, we can use the fact that the cosine function has a period of 360Β° and the sine function has a period of 360Β°.

[ \cos 140^{\circ} = \cos (140^{\circ} - 360^{\circ}) = \cos (-220^{\