The Potential Solutions To The Radical Equation $\sqrt{a+5}=a+3$ Are $a=-4$ And $a=-1$.Which Statement Is True About These Solutions?A. The Solution $a=-4$ Is An Extraneous Solution.B. The Solution $a=-1$ Is

by ADMIN 208 views

Introduction

Radical equations are a type of algebraic equation that involves a variable under a radical sign. These equations can be challenging to solve, and it's essential to understand the properties of radical equations to find their solutions. In this article, we will explore the potential solutions to the radical equation a+5=a+3\sqrt{a+5}=a+3 and analyze the validity of these solutions.

Understanding Radical Equations

Radical equations are equations that involve a variable under a radical sign, such as x\sqrt{x} or x3\sqrt[3]{x}. These equations can be solved using various techniques, including isolating the radical expression, squaring both sides of the equation, and checking for extraneous solutions.

The Radical Equation a+5=a+3\sqrt{a+5}=a+3

The given radical equation is a+5=a+3\sqrt{a+5}=a+3. To solve this equation, we need to isolate the radical expression and then square both sides of the equation.

Solving the Radical Equation

To solve the radical equation, we can start by isolating the radical expression. We can do this by subtracting a+3a+3 from both sides of the equation:

a+5βˆ’(a+3)=0\sqrt{a+5} - (a+3) = 0

Simplifying the equation, we get:

a+5βˆ’aβˆ’3=0\sqrt{a+5} - a - 3 = 0

Next, we can square both sides of the equation to eliminate the radical sign:

(a+5βˆ’aβˆ’3)2=0(\sqrt{a+5} - a - 3)^2 = 0

Expanding the squared expression, we get:

a+5βˆ’2aa+5+a2+6a+9=0a + 5 - 2a\sqrt{a+5} + a^2 + 6a + 9 = 0

Simplifying the equation, we get:

a2+6a+14βˆ’2aa+5=0a^2 + 6a + 14 - 2a\sqrt{a+5} = 0

Finding the Solutions

To find the solutions to the radical equation, we need to isolate the variable aa. We can do this by rearranging the equation and then factoring:

a2+6a+14βˆ’2aa+5=0a^2 + 6a + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

a(a+6)+14βˆ’2aa+5=0a(a + 6) + 14 - 2a\sqrt{a+5} = 0

$a(a + 6) + 14 - 2a\sqrt{a

Q&A: Understanding the Solutions to the Radical Equation

Q: What are the potential solutions to the radical equation a+5=a+3\sqrt{a+5}=a+3?

A: The potential solutions to the radical equation a+5=a+3\sqrt{a+5}=a+3 are a=βˆ’4a=-4 and a=βˆ’1a=-1.

Q: How were the potential solutions found?

A: The potential solutions were found by isolating the radical expression and then squaring both sides of the equation. This process involved simplifying the equation and factoring to find the values of aa that satisfy the equation.

Q: What is the significance of the solutions a=βˆ’4a=-4 and a=βˆ’1a=-1?

A: The solutions a=βˆ’4a=-4 and a=βˆ’1a=-1 are significant because they represent the values of aa that make the equation a+5=a+3\sqrt{a+5}=a+3 true. These values are potential solutions to the equation, but they must be verified to ensure that they are valid.

Q: How can we verify the validity of the solutions a=βˆ’4a=-4 and a=βˆ’1a=-1?

A: To verify the validity of the solutions, we can substitute each value of aa back into the original equation and check if the equation holds true. If the equation holds true, then the solution is valid. If the equation does not hold true, then the solution is extraneous.

Q: What is an extraneous solution?

A: An extraneous solution is a solution that is not valid. In the context of the radical equation a+5=a+3\sqrt{a+5}=a+3, an extraneous solution is a value of aa that makes the equation true, but is not a real solution to the equation.

Q: How can we determine if a solution is extraneous?

A: To determine if a solution is extraneous, we can substitute the value of aa back into the original equation and check if the equation holds true. If the equation does not hold true, then the solution is extraneous.

Q: What is the importance of verifying the validity of solutions?

A: Verifying the validity of solutions is important because it ensures that the solutions are real and not extraneous. This is crucial in mathematics, as extraneous solutions can lead to incorrect conclusions and affect the accuracy of mathematical models.

Q: Can you provide an example of how to verify the validity of a solution?

A: Yes, let's consider the solution a=βˆ’4a=-4. To verify the validity of this solution, we can substitute a=βˆ’4a=-4 back into the original equation:

(βˆ’4)+5=(βˆ’4)+3\sqrt{(-4)+5} = (-4)+3

Simplifying the equation, we get:

1=βˆ’1\sqrt{1} = -1

This equation is not true, so the solution a=βˆ’4a=-4 is extraneous.

Q: Can you provide an example of how to verify the validity of a solution that is not extraneous?

A: Yes, let's consider the solution a=βˆ’1a=-1. To verify the validity of this solution, we can substitute a=βˆ’1a=-1 back into the original equation:

(βˆ’1)+5=(βˆ’1)+3\sqrt{(-1)+5} = (-1)+3

Simplifying the equation, we get:

4=2\sqrt{4} = 2

This equation is true, so the solution a=βˆ’1a=-1 is valid.

Q: What is the final answer to the problem?

A: The final answer to the problem is that the solution a=βˆ’1a=-1 is valid, while the solution a=βˆ’4a=-4 is extraneous.