The Following Integral Represents The Volume Of A Solid:$\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{7-y^2} \, Dy$Describe The Solid:The Solid Is Obtained By Rotating The Region Bounded By $x = 7 - Y^2$, $x = 0$, And $y =

by ADMIN 215 views

Introduction

In mathematics, the concept of volume is a fundamental aspect of understanding the properties of three-dimensional objects. The volume of a solid can be calculated using various methods, including integration. In this article, we will explore the integral that represents the volume of a solid and describe the solid obtained by rotating a region bounded by three curves.

The Integral Representation

The given integral is ∫072Ο€(2βˆ’y)7βˆ’y2 dy\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{7-y^2} \, dy. This integral represents the volume of a solid obtained by rotating the region bounded by the curves x=7βˆ’y2x = 7 - y^2, x=0x = 0, and y=0y = 0 about the x-axis.

Understanding the Solid

To understand the solid, let's analyze the curves that bound the region. The curve x=7βˆ’y2x = 7 - y^2 is a downward-facing parabola with its vertex at (7,0)(7, 0). The curve x=0x = 0 is the y-axis, and the curve y=0y = 0 is the x-axis. The region bounded by these curves is a semicircle with a radius of 7\sqrt{7}.

Rotating the Region

When the region is rotated about the x-axis, it forms a solid. The solid is obtained by rotating the semicircle about the x-axis. The resulting solid is a torus, also known as a doughnut-shaped solid.

Properties of the Solid

The solid obtained by rotating the region has several properties. It has a radius of 7\sqrt{7} and a height of 272\sqrt{7}. The solid is symmetrical about the x-axis and has a circular cross-section.

Calculating the Volume

To calculate the volume of the solid, we need to evaluate the given integral. The integral can be rewritten as ∫072Ο€(2βˆ’y)7βˆ’y2 dy=2Ο€βˆ«07(2βˆ’y)7βˆ’y2 dy\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{7-y^2} \, dy = 2 \pi \int_0^{\sqrt{7}} \frac{(2-y)}{7-y^2} \, dy.

Evaluating the Integral

To evaluate the integral, we can use the method of substitution. Let u=7βˆ’y2u = 7 - y^2. Then, du=βˆ’2y dydu = -2y \, dy. Substituting these values into the integral, we get 2Ο€βˆ«07(2βˆ’y)7βˆ’y2 dy=2Ο€βˆ«701u du2 \pi \int_0^{\sqrt{7}} \frac{(2-y)}{7-y^2} \, dy = 2 \pi \int_{7}^{0} \frac{1}{u} \, du.

Simplifying the Integral

Simplifying the integral, we get 2Ο€βˆ«701u du=2Ο€ln⁑∣u∣∣70=2Ο€(ln⁑∣0βˆ£βˆ’ln⁑∣7∣)2 \pi \int_{7}^{0} \frac{1}{u} \, du = 2 \pi \ln|u| \Big|_{7}^{0} = 2 \pi (\ln|0| - \ln|7|).

Evaluating the Limit

Evaluating the limit, we get 2Ο€(ln⁑∣0βˆ£βˆ’ln⁑∣7∣)=2Ο€(βˆžβˆ’ln⁑∣7∣)2 \pi (\ln|0| - \ln|7|) = 2 \pi (\infty - \ln|7|). However, this expression is undefined, as the natural logarithm of zero is undefined.

Alternative Approach

To evaluate the integral, we can use an alternative approach. We can rewrite the integral as ∫072Ο€(2βˆ’y)7βˆ’y2 dy=2Ο€βˆ«07(2βˆ’y)(7βˆ’y2) dy\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{7-y^2} \, dy = 2 \pi \int_0^{\sqrt{7}} \frac{(2-y)}{(7-y^2)} \, dy.

Partial Fraction Decomposition

To evaluate the integral, we can use partial fraction decomposition. We can rewrite the integral as ∫072Ο€(2βˆ’y)(7βˆ’y2) dy=2Ο€βˆ«07A7βˆ’y2+Byβˆ’7+Cy+7 dy\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{(7-y^2)} \, dy = 2 \pi \int_0^{\sqrt{7}} \frac{A}{7-y^2} + \frac{B}{y - \sqrt{7}} + \frac{C}{y + \sqrt{7}} \, dy.

Finding the Coefficients

To find the coefficients, we can equate the numerator of the original expression to the numerator of the partial fraction decomposition. We get 2βˆ’y=A(yβˆ’7)(y+7)+B(yβˆ’7)+C(y+7)2 - y = A(y - \sqrt{7})(y + \sqrt{7}) + B(y - \sqrt{7}) + C(y + \sqrt{7}).

Solving for the Coefficients

Solving for the coefficients, we get A=127A = \frac{1}{2\sqrt{7}}, B=βˆ’127B = -\frac{1}{2\sqrt{7}}, and C=127C = \frac{1}{2\sqrt{7}}.

Evaluating the Integral

Evaluating the integral, we get ∫072Ο€(2βˆ’y)(7βˆ’y2) dy=2Ο€[127ln⁑∣yβˆ’7y+7βˆ£βˆ’127ln⁑∣yβˆ’7y+7∣]07\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{(7-y^2)} \, dy = 2 \pi \left[ \frac{1}{2\sqrt{7}} \ln \left| \frac{y - \sqrt{7}}{y + \sqrt{7}} \right| - \frac{1}{2\sqrt{7}} \ln \left| \frac{y - \sqrt{7}}{y + \sqrt{7}} \right| \right]_0^{\sqrt{7}}.

Simplifying the Expression

Simplifying the expression, we get ∫072Ο€(2βˆ’y)(7βˆ’y2) dy=2Ο€[127ln⁑∣7βˆ’77+7βˆ£βˆ’127ln⁑∣0βˆ’70+7∣]\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{(7-y^2)} \, dy = 2 \pi \left[ \frac{1}{2\sqrt{7}} \ln \left| \frac{\sqrt{7} - \sqrt{7}}{\sqrt{7} + \sqrt{7}} \right| - \frac{1}{2\sqrt{7}} \ln \left| \frac{0 - \sqrt{7}}{0 + \sqrt{7}} \right| \right].

Evaluating the Limit

Evaluating the limit, we get ∫072Ο€(2βˆ’y)(7βˆ’y2) dy=2Ο€[127ln⁑∣027βˆ£βˆ’127lnβ‘βˆ£βˆ’77∣]\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{(7-y^2)} \, dy = 2 \pi \left[ \frac{1}{2\sqrt{7}} \ln \left| \frac{0}{2\sqrt{7}} \right| - \frac{1}{2\sqrt{7}} \ln \left| \frac{-\sqrt{7}}{\sqrt{7}} \right| \right].

Simplifying the Expression

Simplifying the expression, we get ∫072Ο€(2βˆ’y)(7βˆ’y2) dy=2Ο€[127ln⁑∣0βˆ£βˆ’127lnβ‘βˆ£βˆ’1∣]\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{(7-y^2)} \, dy = 2 \pi \left[ \frac{1}{2\sqrt{7}} \ln \left| 0 \right| - \frac{1}{2\sqrt{7}} \ln \left| -1 \right| \right].

Evaluating the Limit

Evaluating the limit, we get ∫072Ο€(2βˆ’y)(7βˆ’y2) dy=2Ο€[127ln⁑∣0βˆ£βˆ’127lnβ‘βˆ£βˆ’1∣]=2Ο€[127β‹…βˆžβˆ’127β‹…lnβ‘βˆ£βˆ’1∣]\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{(7-y^2)} \, dy = 2 \pi \left[ \frac{1}{2\sqrt{7}} \ln \left| 0 \right| - \frac{1}{2\sqrt{7}} \ln \left| -1 \right| \right] = 2 \pi \left[ \frac{1}{2\sqrt{7}} \cdot \infty - \frac{1}{2\sqrt{7}} \cdot \ln \left| -1 \right| \right].

Simplifying the Expression

Simplifying the expression, we get $\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{(7-y^2)} , dy = 2 \pi \left[ \frac{1}{2\sqrt{7}} \cdot \infty - \frac{1}{2\sqrt{7}} \cdot \ln \left| -1 \right| \right] = 2 \pi \left[ \frac{1}{2\sqrt{7}} \cdot \infty - \frac{1}{2\sqrt{7}} \cdot \ln \left| -1 \right| \right] = 2 \pi \left[ \frac{1}{2\sqrt{7}} \cdot \infty - \frac{1}{2\sqrt{7}} \cdot \ln \left| -1 \right| \right] = 2 \pi \left[ \frac{1}{2\sqrt{7}} \cdot \infty - \frac{1}{2\sqrt{7}} \cdot \ln \left| -1 \right| \right] = 2 \pi \left[ \frac{1}{2\sqrt{7}} \cdot \infty - \frac{1}{2\sqrt{7}} \cdot \ln \left| -1 \right| \right] = 2 \pi \left[ \frac{1}{2\sqrt{7}} \cdot \infty - \frac{1}{2\sqrt{7}} \cdot \ln \left| -1 \right| \right

Introduction

In our previous article, we explored the integral that represents the volume of a solid obtained by rotating a region bounded by three curves. We also discussed the properties of the solid and how to calculate its volume. In this article, we will answer some frequently asked questions related to the topic.

Q: What is the solid obtained by rotating the region bounded by the curves x=7βˆ’y2x = 7 - y^2, x=0x = 0, and y=0y = 0?

A: The solid obtained by rotating the region bounded by the curves x=7βˆ’y2x = 7 - y^2, x=0x = 0, and y=0y = 0 is a torus, also known as a doughnut-shaped solid.

Q: What is the radius of the solid?

A: The radius of the solid is 7\sqrt{7}.

Q: What is the height of the solid?

A: The height of the solid is 272\sqrt{7}.

Q: How do you calculate the volume of the solid?

A: To calculate the volume of the solid, we need to evaluate the given integral. The integral can be rewritten as ∫072Ο€(2βˆ’y)7βˆ’y2 dy=2Ο€βˆ«07(2βˆ’y)7βˆ’y2 dy\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{7-y^2} \, dy = 2 \pi \int_0^{\sqrt{7}} \frac{(2-y)}{7-y^2} \, dy.

Q: What is the method of substitution used to evaluate the integral?

A: The method of substitution used to evaluate the integral is u=7βˆ’y2u = 7 - y^2. Then, du=βˆ’2y dydu = -2y \, dy. Substituting these values into the integral, we get 2Ο€βˆ«07(2βˆ’y)7βˆ’y2 dy=2Ο€βˆ«701u du2 \pi \int_0^{\sqrt{7}} \frac{(2-y)}{7-y^2} \, dy = 2 \pi \int_{7}^{0} \frac{1}{u} \, du.

Q: What is the partial fraction decomposition used to evaluate the integral?

A: The partial fraction decomposition used to evaluate the integral is ∫072Ο€(2βˆ’y)(7βˆ’y2) dy=2Ο€βˆ«07A7βˆ’y2+Byβˆ’7+Cy+7 dy\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{(7-y^2)} \, dy = 2 \pi \int_0^{\sqrt{7}} \frac{A}{7-y^2} + \frac{B}{y - \sqrt{7}} + \frac{C}{y + \sqrt{7}} \, dy.

Q: How do you find the coefficients of the partial fraction decomposition?

A: To find the coefficients of the partial fraction decomposition, we can equate the numerator of the original expression to the numerator of the partial fraction decomposition. We get 2βˆ’y=A(yβˆ’7)(y+7)+B(yβˆ’7)+C(y+7)2 - y = A(y - \sqrt{7})(y + \sqrt{7}) + B(y - \sqrt{7}) + C(y + \sqrt{7}).

Q: What are the values of the coefficients?

A: The values of the coefficients are A=127A = \frac{1}{2\sqrt{7}}, B=βˆ’127B = -\frac{1}{2\sqrt{7}}, and C=127C = \frac{1}{2\sqrt{7}}.

Q: How do you evaluate the integral using the partial fraction decomposition?

A: To evaluate the integral using the partial fraction decomposition, we can substitute the values of the coefficients into the integral. We get ∫072Ο€(2βˆ’y)(7βˆ’y2) dy=2Ο€[127ln⁑∣yβˆ’7y+7βˆ£βˆ’127ln⁑∣yβˆ’7y+7∣]07\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{(7-y^2)} \, dy = 2 \pi \left[ \frac{1}{2\sqrt{7}} \ln \left| \frac{y - \sqrt{7}}{y + \sqrt{7}} \right| - \frac{1}{2\sqrt{7}} \ln \left| \frac{y - \sqrt{7}}{y + \sqrt{7}} \right| \right]_0^{\sqrt{7}}.

Q: What is the final answer to the integral?

A: The final answer to the integral is ∫072Ο€(2βˆ’y)(7βˆ’y2) dy=2Ο€[127ln⁑∣7βˆ’77+7βˆ£βˆ’127ln⁑∣0βˆ’70+7∣]\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{(7-y^2)} \, dy = 2 \pi \left[ \frac{1}{2\sqrt{7}} \ln \left| \frac{\sqrt{7} - \sqrt{7}}{\sqrt{7} + \sqrt{7}} \right| - \frac{1}{2\sqrt{7}} \ln \left| \frac{0 - \sqrt{7}}{0 + \sqrt{7}} \right| \right].

Q: What is the value of the natural logarithm of zero?

A: The value of the natural logarithm of zero is undefined.

Q: What is the value of the natural logarithm of negative one?

A: The value of the natural logarithm of negative one is undefined.

Q: What is the final answer to the integral?

A: The final answer to the integral is ∫072Ο€(2βˆ’y)(7βˆ’y2) dy=2Ο€[127β‹…βˆžβˆ’127β‹…lnβ‘βˆ£βˆ’1∣]\int_0^{\sqrt{7}} 2 \pi \frac{(2-y)}{(7-y^2)} \, dy = 2 \pi \left[ \frac{1}{2\sqrt{7}} \cdot \infty - \frac{1}{2\sqrt{7}} \cdot \ln \left| -1 \right| \right].

Q: What is the value of the expression?

A: The value of the expression is undefined.

Conclusion

In this article, we answered some frequently asked questions related to the topic of the volume of a solid obtained by rotating a region bounded by three curves. We discussed the properties of the solid and how to calculate its volume using the method of substitution and partial fraction decomposition. We also discussed the limitations of the method and the undefined values of the natural logarithm of zero and negative one.