Suppose That $\sin \alpha = \frac{12}{13}$ For A Quadrant II Angle $\alpha$ And $\sin \beta = \frac{3}{5}$ For A Quadrant I Angle $\beta$. Find The Exact Value Of Each Of The Following:a. $\cos \alpha$b.

by ADMIN 204 views

a. cosα\cos \alpha

To find the exact value of cosα\cos \alpha, we can use the Pythagorean identity sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1. Since we are given that sinα=1213\sin \alpha = \frac{12}{13}, we can substitute this value into the equation and solve for cosα\cos \alpha.

sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1

(1213)2+cos2α=1\left(\frac{12}{13}\right)^2 + \cos^2 \alpha = 1

144169+cos2α=1\frac{144}{169} + \cos^2 \alpha = 1

cos2α=1144169\cos^2 \alpha = 1 - \frac{144}{169}

cos2α=25169\cos^2 \alpha = \frac{25}{169}

Since α\alpha is a quadrant II angle, we know that cosα\cos \alpha is negative. Therefore, we can take the negative square root of both sides of the equation to find the exact value of cosα\cos \alpha.

cosα=25169\cos \alpha = -\sqrt{\frac{25}{169}}

cosα=513\cos \alpha = -\frac{5}{13}

b. cosβ\cos \beta

To find the exact value of cosβ\cos \beta, we can use the Pythagorean identity sin2β+cos2β=1\sin^2 \beta + \cos^2 \beta = 1. Since we are given that sinβ=35\sin \beta = \frac{3}{5}, we can substitute this value into the equation and solve for cosβ\cos \beta.

sin2β+cos2β=1\sin^2 \beta + \cos^2 \beta = 1

(35)2+cos2β=1\left(\frac{3}{5}\right)^2 + \cos^2 \beta = 1

925+cos2β=1\frac{9}{25} + \cos^2 \beta = 1

cos2β=1925\cos^2 \beta = 1 - \frac{9}{25}

cos2β=1625\cos^2 \beta = \frac{16}{25}

Since β\beta is a quadrant I angle, we know that cosβ\cos \beta is positive. Therefore, we can take the positive square root of both sides of the equation to find the exact value of cosβ\cos \beta.

cosβ=1625\cos \beta = \sqrt{\frac{16}{25}}

cosβ=45\cos \beta = \frac{4}{5}

c. tanα\tan \alpha

To find the exact value of tanα\tan \alpha, we can use the definition of the tangent function: tanα=sinαcosα\tan \alpha = \frac{\sin \alpha}{\cos \alpha}. We are given that sinα=1213\sin \alpha = \frac{12}{13} and cosα=513\cos \alpha = -\frac{5}{13}, so we can substitute these values into the equation and solve for tanα\tan \alpha.

tanα=sinαcosα\tan \alpha = \frac{\sin \alpha}{\cos \alpha}

tanα=1213513\tan \alpha = \frac{\frac{12}{13}}{-\frac{5}{13}}

tanα=125\tan \alpha = -\frac{12}{5}

d. tanβ\tan \beta

To find the exact value of tanβ\tan \beta, we can use the definition of the tangent function: tanβ=sinβcosβ\tan \beta = \frac{\sin \beta}{\cos \beta}. We are given that sinβ=35\sin \beta = \frac{3}{5} and cosβ=45\cos \beta = \frac{4}{5}, so we can substitute these values into the equation and solve for tanβ\tan \beta.

tanβ=sinβcosβ\tan \beta = \frac{\sin \beta}{\cos \beta}

tanβ=3545\tan \beta = \frac{\frac{3}{5}}{\frac{4}{5}}

tanβ=34\tan \beta = \frac{3}{4}

e. sinα+cosα\sin \alpha + \cos \alpha

To find the exact value of sinα+cosα\sin \alpha + \cos \alpha, we can substitute the values of sinα\sin \alpha and cosα\cos \alpha into the equation.

sinα+cosα=1213513\sin \alpha + \cos \alpha = \frac{12}{13} - \frac{5}{13}

sinα+cosα=513\sin \alpha + \cos \alpha = -\frac{5}{13}

f. sinβ+cosβ\sin \beta + \cos \beta

To find the exact value of sinβ+cosβ\sin \beta + \cos \beta, we can substitute the values of sinβ\sin \beta and cosβ\cos \beta into the equation.

sinβ+cosβ=35+45\sin \beta + \cos \beta = \frac{3}{5} + \frac{4}{5}

sinβ+cosβ=75\sin \beta + \cos \beta = \frac{7}{5}

g. sinαcosβ\sin \alpha \cos \beta

To find the exact value of sinαcosβ\sin \alpha \cos \beta, we can substitute the values of sinα\sin \alpha and cosβ\cos \beta into the equation.

sinαcosβ=121345\sin \alpha \cos \beta = \frac{12}{13} \cdot \frac{4}{5}

sinαcosβ=4865\sin \alpha \cos \beta = \frac{48}{65}

h. cosαsinβ\cos \alpha \sin \beta

To find the exact value of cosαsinβ\cos \alpha \sin \beta, we can substitute the values of cosα\cos \alpha and sinβ\sin \beta into the equation.

cosαsinβ=51335\cos \alpha \sin \beta = -\frac{5}{13} \cdot \frac{3}{5}

cosαsinβ=1565\cos \alpha \sin \beta = -\frac{15}{65}

i. sinαsinβ\sin \alpha \sin \beta

To find the exact value of sinαsinβ\sin \alpha \sin \beta, we can substitute the values of sinα\sin \alpha and sinβ\sin \beta into the equation.

sinαsinβ=121335\sin \alpha \sin \beta = \frac{12}{13} \cdot \frac{3}{5}

sinαsinβ=3665\sin \alpha \sin \beta = \frac{36}{65}

j. cosαcosβ\cos \alpha \cos \beta

To find the exact value of cosαcosβ\cos \alpha \cos \beta, we can substitute the values of cosα\cos \alpha and cosβ\cos \beta into the equation.

cosαcosβ=51345\cos \alpha \cos \beta = -\frac{5}{13} \cdot \frac{4}{5}

cosαcosβ=2065\cos \alpha \cos \beta = -\frac{20}{65}

Q&A

Q: What is the value of cosα\cos \alpha?

A: To find the value of cosα\cos \alpha, we can use the Pythagorean identity sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1. Since we are given that sinα=1213\sin \alpha = \frac{12}{13}, we can substitute this value into the equation and solve for cosα\cos \alpha.

sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1

(1213)2+cos2α=1\left(\frac{12}{13}\right)^2 + \cos^2 \alpha = 1

144169+cos2α=1\frac{144}{169} + \cos^2 \alpha = 1

cos2α=1144169\cos^2 \alpha = 1 - \frac{144}{169}

cos2α=25169\cos^2 \alpha = \frac{25}{169}

Since α\alpha is a quadrant II angle, we know that cosα\cos \alpha is negative. Therefore, we can take the negative square root of both sides of the equation to find the exact value of cosα\cos \alpha.

cosα=25169\cos \alpha = -\sqrt{\frac{25}{169}}

cosα=513\cos \alpha = -\frac{5}{13}

Q: What is the value of cosβ\cos \beta?

A: To find the value of cosβ\cos \beta, we can use the Pythagorean identity sin2β+cos2β=1\sin^2 \beta + \cos^2 \beta = 1. Since we are given that sinβ=35\sin \beta = \frac{3}{5}, we can substitute this value into the equation and solve for cosβ\cos \beta.

sin2β+cos2β=1\sin^2 \beta + \cos^2 \beta = 1

(35)2+cos2β=1\left(\frac{3}{5}\right)^2 + \cos^2 \beta = 1

925+cos2β=1\frac{9}{25} + \cos^2 \beta = 1

cos2β=1925\cos^2 \beta = 1 - \frac{9}{25}

cos2β=1625\cos^2 \beta = \frac{16}{25}

Since β\beta is a quadrant I angle, we know that cosβ\cos \beta is positive. Therefore, we can take the positive square root of both sides of the equation to find the exact value of cosβ\cos \beta.

cosβ=1625\cos \beta = \sqrt{\frac{16}{25}}

cosβ=45\cos \beta = \frac{4}{5}

Q: What is the value of tanα\tan \alpha?

A: To find the value of tanα\tan \alpha, we can use the definition of the tangent function: tanα=sinαcosα\tan \alpha = \frac{\sin \alpha}{\cos \alpha}. We are given that sinα=1213\sin \alpha = \frac{12}{13} and cosα=513\cos \alpha = -\frac{5}{13}, so we can substitute these values into the equation and solve for tanα\tan \alpha.

tanα=sinαcosα\tan \alpha = \frac{\sin \alpha}{\cos \alpha}

tanα=1213513\tan \alpha = \frac{\frac{12}{13}}{-\frac{5}{13}}

tanα=125\tan \alpha = -\frac{12}{5}

Q: What is the value of tanβ\tan \beta?

A: To find the value of tanβ\tan \beta, we can use the definition of the tangent function: tanβ=sinβcosβ\tan \beta = \frac{\sin \beta}{\cos \beta}. We are given that sinβ=35\sin \beta = \frac{3}{5} and cosβ=45\cos \beta = \frac{4}{5}, so we can substitute these values into the equation and solve for tanβ\tan \beta.

tanβ=sinβcosβ\tan \beta = \frac{\sin \beta}{\cos \beta}

tanβ=3545\tan \beta = \frac{\frac{3}{5}}{\frac{4}{5}}

tanβ=34\tan \beta = \frac{3}{4}

Q: What is the value of sinα+cosα\sin \alpha + \cos \alpha?

A: To find the value of sinα+cosα\sin \alpha + \cos \alpha, we can substitute the values of sinα\sin \alpha and cosα\cos \alpha into the equation.

sinα+cosα=1213513\sin \alpha + \cos \alpha = \frac{12}{13} - \frac{5}{13}

sinα+cosα=513\sin \alpha + \cos \alpha = -\frac{5}{13}

Q: What is the value of sinβ+cosβ\sin \beta + \cos \beta?

A: To find the value of sinβ+cosβ\sin \beta + \cos \beta, we can substitute the values of sinβ\sin \beta and cosβ\cos \beta into the equation.

sinβ+cosβ=35+45\sin \beta + \cos \beta = \frac{3}{5} + \frac{4}{5}

sinβ+cosβ=75\sin \beta + \cos \beta = \frac{7}{5}

Q: What is the value of sinαcosβ\sin \alpha \cos \beta?

A: To find the value of sinαcosβ\sin \alpha \cos \beta, we can substitute the values of sinα\sin \alpha and cosβ\cos \beta into the equation.

sinαcosβ=121345\sin \alpha \cos \beta = \frac{12}{13} \cdot \frac{4}{5}

sinαcosβ=4865\sin \alpha \cos \beta = \frac{48}{65}

Q: What is the value of cosαsinβ\cos \alpha \sin \beta?

A: To find the value of cosαsinβ\cos \alpha \sin \beta, we can substitute the values of cosα\cos \alpha and sinβ\sin \beta into the equation.

cosαsinβ=51335\cos \alpha \sin \beta = -\frac{5}{13} \cdot \frac{3}{5}

cosαsinβ=1565\cos \alpha \sin \beta = -\frac{15}{65}

Q: What is the value of sinαsinβ\sin \alpha \sin \beta?

A: To find the value of sinαsinβ\sin \alpha \sin \beta, we can substitute the values of sinα\sin \alpha and sinβ\sin \beta into the equation.

sinαsinβ=121335\sin \alpha \sin \beta = \frac{12}{13} \cdot \frac{3}{5}

sinαsinβ=3665\sin \alpha \sin \beta = \frac{36}{65}

Q: What is the value of cosαcosβ\cos \alpha \cos \beta?

A: To find the value of cosαcosβ\cos \alpha \cos \beta, we can substitute the values of cosα\cos \alpha and cosβ\cos \beta into the equation.

cosαcosβ=51345\cos \alpha \cos \beta = -\frac{5}{13} \cdot \frac{4}{5}

cosαcosβ=2065\cos \alpha \cos \beta = -\frac{20}{65}