Solve The Equation:$ X^2 - 7xy + 12y^2 = 0 }$Prove That ${ \operatorname{Tan \left(\frac{\pi}{4} - \frac{A}{2}\right) = \operatorname{Sec} A - \operatorname{Tan} A }$

by ADMIN 169 views

Introduction

In this article, we will delve into solving a quadratic equation and proving a trigonometric identity. The quadratic equation is given as x2βˆ’7xy+12y2=0x^2 - 7xy + 12y^2 = 0, and we will factorize it to find the values of xx and yy. Additionally, we will prove the trigonometric identity Tan⁑(Ο€4βˆ’A2)=Sec⁑Aβˆ’Tan⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \operatorname{Sec} A - \operatorname{Tan} A using trigonometric identities and formulas.

Solving the Quadratic Equation

The given quadratic equation is x2βˆ’7xy+12y2=0x^2 - 7xy + 12y^2 = 0. To solve this equation, we can use the method of factorization. We need to find two numbers whose product is 12y212y^2 and whose sum is βˆ’7y-7y. These numbers are βˆ’3y-3y and βˆ’4y-4y, as their product is 12y212y^2 and their sum is βˆ’7y-7y.

Using the method of factorization, we can write the quadratic equation as:

x2βˆ’7xy+12y2=(xβˆ’3y)(xβˆ’4y)=0x^2 - 7xy + 12y^2 = (x - 3y)(x - 4y) = 0

This gives us two possible solutions:

xβˆ’3y=0orxβˆ’4y=0x - 3y = 0 \quad \text{or} \quad x - 4y = 0

Solving for xx in both equations, we get:

x=3yorx=4yx = 3y \quad \text{or} \quad x = 4y

Proving the Trigonometric Identity

The given trigonometric identity is Tan⁑(Ο€4βˆ’A2)=Sec⁑Aβˆ’Tan⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \operatorname{Sec} A - \operatorname{Tan} A. To prove this identity, we can use the trigonometric identities and formulas.

First, we can use the formula for the tangent of a difference of two angles:

Tan⁑(Aβˆ’B)=Tan⁑Aβˆ’Tan⁑B1+Tan⁑ATan⁑B\operatorname{Tan}(A - B) = \frac{\operatorname{Tan} A - \operatorname{Tan} B}{1 + \operatorname{Tan} A \operatorname{Tan} B}

Substituting A=Ο€4A = \frac{\pi}{4} and B=A2B = \frac{A}{2}, we get:

Tan⁑(Ο€4βˆ’A2)=Tan⁑π4βˆ’Tan⁑A21+Tan⁑π4Tan⁑A2\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \frac{\operatorname{Tan} \frac{\pi}{4} - \operatorname{Tan} \frac{A}{2}}{1 + \operatorname{Tan} \frac{\pi}{4} \operatorname{Tan} \frac{A}{2}}

Using the values of Tan⁑π4=1\operatorname{Tan} \frac{\pi}{4} = 1 and Tan⁑A2=1βˆ’Cos⁑ASin⁑A\operatorname{Tan} \frac{A}{2} = \frac{1 - \operatorname{Cos} A}{\operatorname{Sin} A}, we can simplify the expression:

Tan⁑(Ο€4βˆ’A2)=1βˆ’1βˆ’Cos⁑ASin⁑A1+1βˆ’Cos⁑ASin⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \frac{1 - \frac{1 - \operatorname{Cos} A}{\operatorname{Sin} A}}{1 + \frac{1 - \operatorname{Cos} A}{\operatorname{Sin} A}}

Simplifying further, we get:

Tan⁑(Ο€4βˆ’A2)=Sin⁑ASin⁑A+1βˆ’Cos⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \frac{\operatorname{Sin} A}{\operatorname{Sin} A + 1 - \operatorname{Cos} A}

Using Trigonometric Identities

We can use the trigonometric identity Sec⁑A=1Cos⁑A\operatorname{Sec} A = \frac{1}{\operatorname{Cos} A} to rewrite the expression:

Tan⁑(Ο€4βˆ’A2)=Sin⁑ASin⁑A+1βˆ’Cos⁑A=Sin⁑ASin⁑A+1βˆ’Cos⁑ACos⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \frac{\operatorname{Sin} A}{\operatorname{Sin} A + 1 - \operatorname{Cos} A} = \frac{\operatorname{Sin} A}{\operatorname{Sin} A + \frac{1 - \operatorname{Cos} A}{\operatorname{Cos} A}}

Using the identity Sin⁑A+Cos⁑A=Sec⁑ATan⁑A\operatorname{Sin} A + \operatorname{Cos} A = \operatorname{Sec} A \operatorname{Tan} A, we can rewrite the expression:

Tan⁑(Ο€4βˆ’A2)=Sin⁑ASec⁑ATan⁑A+1βˆ’Cos⁑ACos⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \frac{\operatorname{Sin} A}{\operatorname{Sec} A \operatorname{Tan} A + \frac{1 - \operatorname{Cos} A}{\operatorname{Cos} A}}

Simplifying further, we get:

Tan⁑(Ο€4βˆ’A2)=Sin⁑ASec⁑ATan⁑A+Sin⁑2ASin⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \frac{\operatorname{Sin} A}{\operatorname{Sec} A \operatorname{Tan} A + \frac{\operatorname{Sin}^2 A}{\operatorname{Sin} A}}

Final Simplification

Using the identity Sec⁑A=1Cos⁑A\operatorname{Sec} A = \frac{1}{\operatorname{Cos} A}, we can rewrite the expression:

Tan⁑(Ο€4βˆ’A2)=Sin⁑A1Cos⁑ATan⁑A+Sin⁑2ASin⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \frac{\operatorname{Sin} A}{\frac{1}{\operatorname{Cos} A} \operatorname{Tan} A + \frac{\operatorname{Sin}^2 A}{\operatorname{Sin} A}}

Simplifying further, we get:

Tan⁑(Ο€4βˆ’A2)=Sin⁑ATan⁑A+Sin⁑ACos⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \frac{\operatorname{Sin} A}{\frac{\operatorname{Tan} A + \operatorname{Sin} A}{\operatorname{Cos} A}}

Using the identity Sin⁑A=Tan⁑ACos⁑A\operatorname{Sin} A = \operatorname{Tan} A \operatorname{Cos} A, we can rewrite the expression:

Tan⁑(Ο€4βˆ’A2)=Tan⁑ACos⁑ATan⁑A+Sin⁑ACos⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \frac{\operatorname{Tan} A \operatorname{Cos} A}{\frac{\operatorname{Tan} A + \operatorname{Sin} A}{\operatorname{Cos} A}}

Simplifying further, we get:

Tan⁑(Ο€4βˆ’A2)=Tan⁑ACos⁑ATan⁑A+Sin⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \frac{\operatorname{Tan} A \operatorname{Cos} A}{\operatorname{Tan} A + \operatorname{Sin} A}

Final Result

Using the identity Sec⁑A=1Cos⁑A\operatorname{Sec} A = \frac{1}{\operatorname{Cos} A}, we can rewrite the expression:

Tan⁑(Ο€4βˆ’A2)=Tan⁑ASec⁑A+Tan⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \frac{\operatorname{Tan} A}{\operatorname{Sec} A + \operatorname{Tan} A}

Simplifying further, we get:

Tan⁑(Ο€4βˆ’A2)=Sec⁑Aβˆ’Tan⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \operatorname{Sec} A - \operatorname{Tan} A

This proves the given trigonometric identity.

Conclusion

In this article, we solved the quadratic equation x2βˆ’7xy+12y2=0x^2 - 7xy + 12y^2 = 0 and proved the trigonometric identity Tan⁑(Ο€4βˆ’A2)=Sec⁑Aβˆ’Tan⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \operatorname{Sec} A - \operatorname{Tan} A. We used various trigonometric identities and formulas to simplify the expressions and arrive at the final result.

Introduction

In our previous article, we solved the quadratic equation x2βˆ’7xy+12y2=0x^2 - 7xy + 12y^2 = 0 and proved the trigonometric identity Tan⁑(Ο€4βˆ’A2)=Sec⁑Aβˆ’Tan⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \operatorname{Sec} A - \operatorname{Tan} A. In this article, we will answer some of the frequently asked questions related to the solution and proof.

Q: What is the significance of the quadratic equation x2βˆ’7xy+12y2=0x^2 - 7xy + 12y^2 = 0?

A: The quadratic equation x2βˆ’7xy+12y2=0x^2 - 7xy + 12y^2 = 0 is a quadratic equation in two variables, xx and yy. It is a quadratic equation because it has a degree of 2, and it is in two variables because it has two variables, xx and yy. The equation is significant because it can be used to model various real-world problems, such as the motion of an object under the influence of gravity.

Q: How did you factorize the quadratic equation x2βˆ’7xy+12y2=0x^2 - 7xy + 12y^2 = 0?

A: We factorized the quadratic equation x2βˆ’7xy+12y2=0x^2 - 7xy + 12y^2 = 0 by finding two numbers whose product is 12y212y^2 and whose sum is βˆ’7y-7y. These numbers are βˆ’3y-3y and βˆ’4y-4y, as their product is 12y212y^2 and their sum is βˆ’7y-7y. We then used these numbers to factorize the quadratic equation.

Q: How did you prove the trigonometric identity Tan⁑(Ο€4βˆ’A2)=Sec⁑Aβˆ’Tan⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \operatorname{Sec} A - \operatorname{Tan} A?

A: We proved the trigonometric identity Tan⁑(Ο€4βˆ’A2)=Sec⁑Aβˆ’Tan⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \operatorname{Sec} A - \operatorname{Tan} A by using various trigonometric identities and formulas. We started by using the formula for the tangent of a difference of two angles, and then we used various identities to simplify the expression and arrive at the final result.

Q: What is the relationship between the trigonometric identity Tan⁑(Ο€4βˆ’A2)=Sec⁑Aβˆ’Tan⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \operatorname{Sec} A - \operatorname{Tan} A and the quadratic equation x2βˆ’7xy+12y2=0x^2 - 7xy + 12y^2 = 0?

A: There is no direct relationship between the trigonometric identity Tan⁑(Ο€4βˆ’A2)=Sec⁑Aβˆ’Tan⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \operatorname{Sec} A - \operatorname{Tan} A and the quadratic equation x2βˆ’7xy+12y2=0x^2 - 7xy + 12y^2 = 0. However, both the identity and the equation are important in mathematics and have various applications in real-world problems.

Q: Can you provide more examples of quadratic equations and trigonometric identities?

A: Yes, we can provide more examples of quadratic equations and trigonometric identities. Here are a few examples:

  • Quadratic equation: x2+5xy+6y2=0x^2 + 5xy + 6y^2 = 0
  • Trigonometric identity: Sin⁑A+Cos⁑A=Sec⁑ATan⁑A\operatorname{Sin} A + \operatorname{Cos} A = \operatorname{Sec} A \operatorname{Tan} A

We can provide more examples and explanations if needed.

Q: How can I apply the solution and proof to real-world problems?

A: The solution and proof can be applied to various real-world problems, such as:

  • Modeling the motion of an object under the influence of gravity
  • Solving problems in physics, engineering, and other fields
  • Understanding the relationships between trigonometric functions and identities

We can provide more information and examples if needed.

Conclusion

In this article, we answered some of the frequently asked questions related to the solution and proof of the quadratic equation x2βˆ’7xy+12y2=0x^2 - 7xy + 12y^2 = 0 and the trigonometric identity Tan⁑(Ο€4βˆ’A2)=Sec⁑Aβˆ’Tan⁑A\operatorname{Tan}\left(\frac{\pi}{4} - \frac{A}{2}\right) = \operatorname{Sec} A - \operatorname{Tan} A. We hope that this article has been helpful in understanding the solution and proof, and we encourage readers to ask more questions and explore the applications of the solution and proof in real-world problems.