Simplify The Expression: $\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right$\]

by ADMIN 85 views

Introduction

In mathematics, trigonometric functions and their inverses play a crucial role in solving various problems. The given expression involves the inverse cosine function, which is denoted by cosā”āˆ’1\cos^{-1}. The expression cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right) seems complex, but it can be simplified using the properties of trigonometric functions. In this article, we will explore the simplification of this expression and provide a step-by-step solution.

Understanding the Inverse Cosine Function

The inverse cosine function, denoted by cosā”āˆ’1\cos^{-1}, is a function that returns the angle whose cosine is a given value. In other words, if cos⁔(x)=y\cos(x) = y, then cosā”āˆ’1(y)=x\cos^{-1}(y) = x. The range of the inverse cosine function is [0,Ļ€][0, \pi].

Simplifying the Expression

To simplify the expression cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right), we need to evaluate the innermost function first, which is cos⁔(āˆ’13Ļ€8)\cos\left(-\frac{13 \pi}{8}\right). We can use the periodicity of the cosine function to simplify this expression.

Periodicity of the Cosine Function

The cosine function has a period of 2Ļ€2\pi, which means that cos⁔(x)=cos⁔(x+2kĻ€)\cos(x) = \cos(x + 2k\pi), where kk is an integer. We can use this property to simplify the expression cos⁔(āˆ’13Ļ€8)\cos\left(-\frac{13 \pi}{8}\right).

Evaluating the Innermost Function

Using the periodicity of the cosine function, we can rewrite cos⁔(āˆ’13Ļ€8)\cos\left(-\frac{13 \pi}{8}\right) as cos⁔(āˆ’13Ļ€8+2kĻ€)\cos\left(-\frac{13 \pi}{8} + 2k\pi\right). We want to find a value of kk such that the argument of the cosine function is in the range [0,2Ļ€][0, 2\pi].

Finding the Appropriate Value of kk

To find the appropriate value of kk, we need to add or subtract multiples of 2Ļ€2\pi from the argument of the cosine function until it is in the range [0,2Ļ€][0, 2\pi]. Let's try adding 2Ļ€2\pi to the argument:

āˆ’13Ļ€8+2kĻ€=āˆ’13Ļ€8+2Ļ€-\frac{13 \pi}{8} + 2k\pi = -\frac{13 \pi}{8} + 2\pi

Simplifying the Argument

We can simplify the argument by combining the fractions:

āˆ’13Ļ€8+2Ļ€=āˆ’13Ļ€8+16Ļ€8=3Ļ€8-\frac{13 \pi}{8} + 2\pi = -\frac{13 \pi}{8} + \frac{16 \pi}{8} = \frac{3 \pi}{8}

Evaluating the Cosine Function

Now that we have simplified the argument, we can evaluate the cosine function:

cos⁔(3Ļ€8)=cos⁔(2Ļ€āˆ’11Ļ€8)\cos\left(\frac{3 \pi}{8}\right) = \cos\left(2\pi - \frac{11 \pi}{8}\right)

Using the Periodicity of the Cosine Function Again

We can use the periodicity of the cosine function again to simplify the expression:

cos⁔(2Ļ€āˆ’11Ļ€8)=cos⁔(āˆ’11Ļ€8)\cos\left(2\pi - \frac{11 \pi}{8}\right) = \cos\left(-\frac{11 \pi}{8}\right)

Evaluating the Cosine Function Again

Now that we have simplified the argument, we can evaluate the cosine function:

cos⁔(āˆ’11Ļ€8)=cos⁔(11Ļ€8)\cos\left(-\frac{11 \pi}{8}\right) = \cos\left(\frac{11 \pi}{8}\right)

Using the Symmetry of the Cosine Function

The cosine function is symmetric about the origin, which means that cos⁔(x)=cos⁔(āˆ’x)\cos(x) = \cos(-x). We can use this property to simplify the expression:

cos⁔(11Ļ€8)=cos⁔(2Ļ€āˆ’3Ļ€8)\cos\left(\frac{11 \pi}{8}\right) = \cos\left(2\pi - \frac{3 \pi}{8}\right)

Evaluating the Cosine Function Again

Now that we have simplified the argument, we can evaluate the cosine function:

cos⁔(2Ļ€āˆ’3Ļ€8)=cos⁔(āˆ’3Ļ€8)\cos\left(2\pi - \frac{3 \pi}{8}\right) = \cos\left(-\frac{3 \pi}{8}\right)

Using the Periodicity of the Cosine Function Again

We can use the periodicity of the cosine function again to simplify the expression:

cos⁔(āˆ’3Ļ€8)=cos⁔(3Ļ€8)\cos\left(-\frac{3 \pi}{8}\right) = \cos\left(\frac{3 \pi}{8}\right)

Evaluating the Cosine Function Again

Now that we have simplified the argument, we can evaluate the cosine function:

cos⁔(3Ļ€8)=12\cos\left(\frac{3 \pi}{8}\right) = \frac{1}{2}

Simplifying the Expression

Now that we have evaluated the innermost function, we can simplify the expression cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right):

cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))=cosā”āˆ’1(12)\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right) = \cos^{-1}\left(\frac{1}{2}\right)

Evaluating the Inverse Cosine Function

The inverse cosine function returns the angle whose cosine is a given value. In this case, the given value is 12\frac{1}{2}, which corresponds to an angle of π3\frac{\pi}{3}.

Conclusion

In conclusion, the expression cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right) can be simplified using the properties of trigonometric functions. By evaluating the innermost function and using the periodicity and symmetry of the cosine function, we can simplify the expression to cosā”āˆ’1(12)\cos^{-1}\left(\frac{1}{2}\right), which corresponds to an angle of Ļ€3\frac{\pi}{3}.

Final Answer

The final answer is π3\boxed{\frac{\pi}{3}}.

Introduction

In our previous article, we explored the simplification of the expression cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right). We used the properties of trigonometric functions, including the periodicity and symmetry of the cosine function, to simplify the expression. In this article, we will answer some common questions related to this topic.

Q: What is the inverse cosine function?

A: The inverse cosine function, denoted by cosā”āˆ’1\cos^{-1}, is a function that returns the angle whose cosine is a given value. In other words, if cos⁔(x)=y\cos(x) = y, then cosā”āˆ’1(y)=x\cos^{-1}(y) = x. The range of the inverse cosine function is [0,Ļ€][0, \pi].

Q: How do you simplify the expression cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right)?

A: To simplify the expression cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right), we need to evaluate the innermost function first, which is cos⁔(āˆ’13Ļ€8)\cos\left(-\frac{13 \pi}{8}\right). We can use the periodicity of the cosine function to simplify this expression.

Q: What is the periodicity of the cosine function?

A: The cosine function has a period of 2Ļ€2\pi, which means that cos⁔(x)=cos⁔(x+2kĻ€)\cos(x) = \cos(x + 2k\pi), where kk is an integer. We can use this property to simplify the expression cos⁔(āˆ’13Ļ€8)\cos\left(-\frac{13 \pi}{8}\right).

Q: How do you find the appropriate value of kk to simplify the expression cos⁔(āˆ’13Ļ€8)\cos\left(-\frac{13 \pi}{8}\right)?

A: To find the appropriate value of kk, we need to add or subtract multiples of 2Ļ€2\pi from the argument of the cosine function until it is in the range [0,2Ļ€][0, 2\pi]. Let's try adding 2Ļ€2\pi to the argument:

āˆ’13Ļ€8+2kĻ€=āˆ’13Ļ€8+2Ļ€-\frac{13 \pi}{8} + 2k\pi = -\frac{13 \pi}{8} + 2\pi

Q: How do you simplify the argument āˆ’13Ļ€8+2Ļ€-\frac{13 \pi}{8} + 2\pi?

A: We can simplify the argument by combining the fractions:

āˆ’13Ļ€8+2Ļ€=āˆ’13Ļ€8+16Ļ€8=3Ļ€8-\frac{13 \pi}{8} + 2\pi = -\frac{13 \pi}{8} + \frac{16 \pi}{8} = \frac{3 \pi}{8}

Q: What is the final answer to the expression cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right)?

A: The final answer to the expression cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right) is Ļ€3\boxed{\frac{\pi}{3}}.

Q: What are some common mistakes to avoid when simplifying the expression cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right)?

A: Some common mistakes to avoid when simplifying the expression cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right) include:

  • Not using the periodicity of the cosine function to simplify the expression
  • Not finding the appropriate value of kk to simplify the expression
  • Not simplifying the argument correctly
  • Not using the symmetry of the cosine function to simplify the expression

Q: How can I practice simplifying expressions like cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right)?

A: You can practice simplifying expressions like cosā”āˆ’1(cos⁔(āˆ’13Ļ€8))\cos^{-1}\left(\cos\left(-\frac{13 \pi}{8}\right)\right) by working through examples and exercises in a textbook or online resource. You can also try simplifying different expressions on your own and checking your answers with a calculator or online tool.

Q: What are some real-world applications of the inverse cosine function?

A: The inverse cosine function has many real-world applications, including:

  • Calculating the angle of elevation of a building or a mountain
  • Determining the angle of a triangle given the lengths of two sides
  • Calculating the cosine of an angle given the sine or tangent of the angle
  • Solving problems in physics, engineering, and computer science that involve trigonometry and inverse trigonometric functions.