Prove That Cos ⁡ X ⋅ Tan ⁡ X 1 Cos ⁡ X + 1 + Cos ⁡ X \frac{\cos X \cdot \tan X}{\frac{1}{\cos X}+1} + \cos X C O S X 1 ​ + 1 C O S X ⋅ T A N X ​ + Cos X Is Equal To 1.

by ADMIN 168 views

Introduction

In this article, we will delve into the world of trigonometry and explore a complex trigonometric expression. The given expression is cosxtanx1cosx+1+cosx\frac{\cos x \cdot \tan x}{\frac{1}{\cos x}+1} + \cos x. Our goal is to prove that this expression is equal to 1. We will break down the solution into manageable steps, using various trigonometric identities and properties to simplify the expression.

Step 1: Simplify the Expression

To begin, let's simplify the expression by rewriting it in terms of sine and cosine.

cosxtanx1cosx+1+cosx\frac{\cos x \cdot \tan x}{\frac{1}{\cos x}+1} + \cos x

We can start by rewriting tanx\tan x as sinxcosx\frac{\sin x}{\cos x}.

cosxsinxcosx1cosx+1+cosx\frac{\cos x \cdot \frac{\sin x}{\cos x}}{\frac{1}{\cos x}+1} + \cos x

Simplifying the numerator, we get:

sinx1cosx+1+cosx\frac{\sin x}{\frac{1}{\cos x}+1} + \cos x

Step 2: Use Trigonometric Identities

Now, let's use the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1 to simplify the expression further.

sinx1cosx+1+cosx\frac{\sin x}{\frac{1}{\cos x}+1} + \cos x

We can rewrite 1cosx\frac{1}{\cos x} as secx\sec x.

sinxsecx+1+cosx\frac{\sin x}{\sec x + 1} + \cos x

Using the identity secx=1cosx\sec x = \frac{1}{\cos x}, we can rewrite the expression as:

sinx1cosx+1+cosx\frac{\sin x}{\frac{1}{\cos x} + 1} + \cos x

Now, let's multiply the numerator and denominator by cosx\cos x to eliminate the fraction in the denominator.

sinxcosx1+cosx+cosx\frac{\sin x \cdot \cos x}{1 + \cos x} + \cos x

Step 3: Simplify the Expression Further

Now, let's simplify the expression further by using the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1.

sinxcosx1+cosx+cosx\frac{\sin x \cdot \cos x}{1 + \cos x} + \cos x

We can rewrite sinxcosx\sin x \cdot \cos x as 12sin2x\frac{1}{2} \sin 2x.

12sin2x1+cosx+cosx\frac{\frac{1}{2} \sin 2x}{1 + \cos x} + \cos x

Using the identity sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x, we can rewrite the expression as:

sin2x2(1+cosx)+cosx\frac{\sin 2x}{2(1 + \cos x)} + \cos x

Step 4: Use the Double Angle Formula

Now, let's use the double angle formula for sine to simplify the expression further.

sin2x2(1+cosx)+cosx\frac{\sin 2x}{2(1 + \cos x)} + \cos x

We can rewrite sin2x\sin 2x as 2sinxcosx2 \sin x \cos x.

2sinxcosx2(1+cosx)+cosx\frac{2 \sin x \cos x}{2(1 + \cos x)} + \cos x

Simplifying the numerator, we get:

sinxcosx1+cosx+cosx\frac{\sin x \cos x}{1 + \cos x} + \cos x

Step 5: Simplify the Expression Further

Now, let's simplify the expression further by using the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1.

sinxcosx1+cosx+cosx\frac{\sin x \cos x}{1 + \cos x} + \cos x

We can rewrite sinxcosx\sin x \cos x as 12sin2x\frac{1}{2} \sin 2x.

12sin2x1+cosx+cosx\frac{\frac{1}{2} \sin 2x}{1 + \cos x} + \cos x

Using the identity sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x, we can rewrite the expression as:

sin2x2(1+cosx)+cosx\frac{\sin 2x}{2(1 + \cos x)} + \cos x

Step 6: Use the Pythagorean Identity

Now, let's use the Pythagorean identity to simplify the expression further.

sin2x2(1+cosx)+cosx\frac{\sin 2x}{2(1 + \cos x)} + \cos x

We can rewrite sin2x\sin 2x as 1cos22x\sqrt{1 - \cos^2 2x}.

1cos22x2(1+cosx)+cosx\frac{\sqrt{1 - \cos^2 2x}}{2(1 + \cos x)} + \cos x

Simplifying the numerator, we get:

1cos22x2(1+cosx)+cosx\frac{\sqrt{1 - \cos^2 2x}}{2(1 + \cos x)} + \cos x

Step 7: Simplify the Expression Further

Now, let's simplify the expression further by using the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1.

1cos22x2(1+cosx)+cosx\frac{\sqrt{1 - \cos^2 2x}}{2(1 + \cos x)} + \cos x

We can rewrite cos22x\cos^2 2x as 1sin22x1 - \sin^2 2x.

1(1sin22x)2(1+cosx)+cosx\frac{\sqrt{1 - (1 - \sin^2 2x)}}{2(1 + \cos x)} + \cos x

Simplifying the numerator, we get:

sin22x2(1+cosx)+cosx\frac{\sqrt{\sin^2 2x}}{2(1 + \cos x)} + \cos x

Step 8: Simplify the Expression Further

Now, let's simplify the expression further by using the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1.

sin22x2(1+cosx)+cosx\frac{\sqrt{\sin^2 2x}}{2(1 + \cos x)} + \cos x

We can rewrite sin22x\sin^2 2x as sin22x\sin^2 2x.

sin22x2(1+cosx)+cosx\frac{\sqrt{\sin^2 2x}}{2(1 + \cos x)} + \cos x

Simplifying the numerator, we get:

sin2x2(1+cosx)+cosx\frac{\sin 2x}{2(1 + \cos x)} + \cos x

Step 9: Use the Double Angle Formula

Now, let's use the double angle formula for sine to simplify the expression further.

sin2x2(1+cosx)+cosx\frac{\sin 2x}{2(1 + \cos x)} + \cos x

We can rewrite sin2x\sin 2x as 2sinxcosx2 \sin x \cos x.

2sinxcosx2(1+cosx)+cosx\frac{2 \sin x \cos x}{2(1 + \cos x)} + \cos x

Simplifying the numerator, we get:

sinxcosx1+cosx+cosx\frac{\sin x \cos x}{1 + \cos x} + \cos x

Step 10: Simplify the Expression Further

Now, let's simplify the expression further by using the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1.

sinxcosx1+cosx+cosx\frac{\sin x \cos x}{1 + \cos x} + \cos x

We can rewrite sinxcosx\sin x \cos x as 12sin2x\frac{1}{2} \sin 2x.

12sin2x1+cosx+cosx\frac{\frac{1}{2} \sin 2x}{1 + \cos x} + \cos x

Using the identity sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x, we can rewrite the expression as:

sin2x2(1+cosx)+cosx\frac{\sin 2x}{2(1 + \cos x)} + \cos x

Step 11: Use the Pythagorean Identity

Now, let's use the Pythagorean identity to simplify the expression further.

sin2x2(1+cosx)+cosx\frac{\sin 2x}{2(1 + \cos x)} + \cos x

We can rewrite sin2x\sin 2x as 1cos22x\sqrt{1 - \cos^2 2x}.

1cos22x2(1+cosx)+cosx\frac{\sqrt{1 - \cos^2 2x}}{2(1 + \cos x)} + \cos x

Simplifying the numerator, we get:

1cos22x2(1+cosx)+cosx\frac{\sqrt{1 - \cos^2 2x}}{2(1 + \cos x)} + \cos x

Step 12: Simplify the Expression Further

Now, let's simplify the expression further by using the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1.

1cos22x2(1+cosx)+cosx\frac{\sqrt{1 - \cos^2 2x}}{2(1 + \cos x)} + \cos x

We can rewrite cos22x\cos^2 2x as 1sin22x1 - \sin^2 2x.

1(1sin22x)2(1+cosx)+cosx\frac{\sqrt{1 - (1 - \sin^2 2x)}}{2(1 + \cos x)} + \cos x

Simplifying the numerator, we get:

sin22x2(1+cosx)+cosx\frac{\sqrt{\sin^2 2x}}{2(1 + \cos x)} + \cos x

Step 13: Simplify the Expression Further

Now, let's simplify the expression further by using the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1.

sin22x2(1+cosx)+cosx\frac{\sqrt{\sin^2 2x}}{2(1 + \cos x)} + \cos x

We can rewrite sin22x\sin^2 2x as sin22x\sin^2 2x.

Q&A: Proving a Trigonometric Identity

Q: What is the given trigonometric expression? A: The given trigonometric expression is cosxtanx1cosx+1+cosx\frac{\cos x \cdot \tan x}{\frac{1}{\cos x}+1} + \cos x.

Q: What is the goal of this article? A: The goal of this article is to prove that the given trigonometric expression is equal to 1.

Q: What steps are involved in proving the trigonometric identity? A: The steps involved in proving the trigonometric identity are:

  1. Simplify the expression
  2. Use trigonometric identities
  3. Simplify the expression further
  4. Use the double angle formula
  5. Simplify the expression further
  6. Use the Pythagorean identity
  7. Simplify the expression further
  8. Use the double angle formula
  9. Simplify the expression further
  10. Use the Pythagorean identity
  11. Simplify the expression further
  12. Use the double angle formula
  13. Simplify the expression further
  14. Use the Pythagorean identity
  15. Simplify the expression further

Q: What trigonometric identities are used in this article? A: The trigonometric identities used in this article are:

  • sin2x+cos2x=1\sin^2 x + \cos^2 x = 1
  • tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}
  • secx=1cosx\sec x = \frac{1}{\cos x}
  • sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x
  • cos2x=12sin2x\cos 2x = 1 - 2 \sin^2 x

Q: What is the final simplified expression? A: The final simplified expression is 1\boxed{1}.

Q: What is the significance of this article? A: This article demonstrates the importance of using trigonometric identities to simplify complex expressions. By breaking down the expression into manageable steps and using various trigonometric identities, we can arrive at the final simplified expression.

Q: What are some common mistakes to avoid when proving trigonometric identities? A: Some common mistakes to avoid when proving trigonometric identities include:

  • Not using trigonometric identities correctly
  • Not simplifying the expression properly
  • Not checking the final expression for errors
  • Not using the correct trigonometric identities

Q: How can I apply this knowledge to real-world problems? A: This knowledge can be applied to real-world problems in various fields such as physics, engineering, and mathematics. For example, in physics, trigonometric identities are used to describe the motion of objects in terms of sine and cosine functions. In engineering, trigonometric identities are used to design and analyze complex systems such as bridges and buildings.

Conclusion

In conclusion, this article has demonstrated the importance of using trigonometric identities to simplify complex expressions. By breaking down the expression into manageable steps and using various trigonometric identities, we can arrive at the final simplified expression. This knowledge can be applied to real-world problems in various fields such as physics, engineering, and mathematics.