Let $A(x) = \int_0^x \frac{dt}{1+t^2}$. Show That $A\left(\frac{2x}{1-x^2}\right)= 2A(x)$ For Any $x$, $\lvert X\rvert < 1$.

by ADMIN 125 views

Let A(x)=∫0xdt1+t2A(x) = \int_0^x \frac{dt}{1+t^2}. Show that A(2x1βˆ’x2)=2A(x)A\left(\frac{2x}{1-x^2}\right)= 2A(x) for any xx, ∣x∣<1\lvert x\rvert < 1

In this article, we will explore a problem from Buck's Advanced Calculus, section 6.5, which involves a change of variable in a definite integral. The problem requires us to show that a given function A(x)A(x), defined as the integral of 11+t2\frac{1}{1+t^2} from 00 to xx, can be expressed as 2A(x)2A(x) when the variable is replaced by 2x1βˆ’x2\frac{2x}{1-x^2}. We will use the technique of change of variable to solve this problem.

To solve this problem, we will use the technique of change of variable. This technique involves substituting a new variable into the integral, which can simplify the integral and make it easier to evaluate. In this case, we will substitute t=tan⁑θt = \tan\theta into the integral.

Substitution

Let t=tan⁑θt = \tan\theta. Then, we have dt=sec⁑2θdθdt = \sec^2\theta d\theta. We also have 1+t2=1+tan⁑2θ=sec⁑2θ1 + t^2 = 1 + \tan^2\theta = \sec^2\theta.

Integral

The integral becomes:

∫0xdt1+t2=∫0tanβ‘βˆ’1xsec⁑2ΞΈdΞΈsec⁑2ΞΈ=∫0tanβ‘βˆ’1xdΞΈ=tanβ‘βˆ’1x\int_0^x \frac{dt}{1+t^2} = \int_0^{\tan^{-1}x} \frac{\sec^2\theta d\theta}{\sec^2\theta} = \int_0^{\tan^{-1}x} d\theta = \tan^{-1}x

Expression for A(x)A(x)

We can now express A(x)A(x) as:

A(x)=∫0xdt1+t2=tanβ‘βˆ’1xA(x) = \int_0^x \frac{dt}{1+t^2} = \tan^{-1}x

Change of Variable

Now, we will substitute t=tan⁑θt = \tan\theta into the expression for A(2x1βˆ’x2)A\left(\frac{2x}{1-x^2}\right).

Substitution

Let t=tan⁑θt = \tan\theta. Then, we have dt=sec⁑2θdθdt = \sec^2\theta d\theta. We also have 1+t2=1+tan⁑2θ=sec⁑2θ1 + t^2 = 1 + \tan^2\theta = \sec^2\theta.

Integral

The integral becomes:

∫02x1βˆ’x2dt1+t2=∫0tanβ‘βˆ’1(2x1βˆ’x2)sec⁑2ΞΈdΞΈsec⁑2ΞΈ=∫0tanβ‘βˆ’1(2x1βˆ’x2)dΞΈ=tanβ‘βˆ’1(2x1βˆ’x2)\int_0^{\frac{2x}{1-x^2}} \frac{dt}{1+t^2} = \int_0^{\tan^{-1}\left(\frac{2x}{1-x^2}\right)} \frac{\sec^2\theta d\theta}{\sec^2\theta} = \int_0^{\tan^{-1}\left(\frac{2x}{1-x^2}\right)} d\theta = \tan^{-1}\left(\frac{2x}{1-x^2}\right)

Expression for A(2x1βˆ’x2)A\left(\frac{2x}{1-x^2}\right)

We can now express A(2x1βˆ’x2)A\left(\frac{2x}{1-x^2}\right) as:

A(2x1βˆ’x2)=tanβ‘βˆ’1(2x1βˆ’x2)A\left(\frac{2x}{1-x^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)

Relationship between A(x)A(x) and A(2x1βˆ’x2)A\left(\frac{2x}{1-x^2}\right)

We can now establish a relationship between A(x)A(x) and A(2x1βˆ’x2)A\left(\frac{2x}{1-x^2}\right).

Derivation

We have:

A(2x1βˆ’x2)=tanβ‘βˆ’1(2x1βˆ’x2)A\left(\frac{2x}{1-x^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)

We can also express 2x1βˆ’x2\frac{2x}{1-x^2} as:

2x1βˆ’x2=tan⁑(2ΞΈ)\frac{2x}{1-x^2} = \tan(2\theta)

where ΞΈ=tanβ‘βˆ’1x\theta = \tan^{-1}x.

Substitution

Let ΞΈ=tanβ‘βˆ’1x\theta = \tan^{-1}x. Then, we have:

A(2x1βˆ’x2)=tanβ‘βˆ’1(tan⁑(2ΞΈ))=2ΞΈA\left(\frac{2x}{1-x^2}\right) = \tan^{-1}\left(\tan(2\theta)\right) = 2\theta

Expression for A(2x1βˆ’x2)A\left(\frac{2x}{1-x^2}\right)

We can now express A(2x1βˆ’x2)A\left(\frac{2x}{1-x^2}\right) as:

A(2x1βˆ’x2)=2ΞΈ=2tanβ‘βˆ’1x=2A(x)A\left(\frac{2x}{1-x^2}\right) = 2\theta = 2\tan^{-1}x = 2A(x)

Conclusion

We have shown that A(2x1βˆ’x2)=2A(x)A\left(\frac{2x}{1-x^2}\right) = 2A(x) for any xx such that ∣x∣<1\lvert x\rvert < 1. This result can be used to simplify the evaluation of definite integrals involving the function 11+t2\frac{1}{1+t^2}.

The final answer is: 2A(x)\boxed{2A(x)}
Q&A: Let A(x)=∫0xdt1+t2A(x) = \int_0^x \frac{dt}{1+t^2}. Show that A(2x1βˆ’x2)=2A(x)A\left(\frac{2x}{1-x^2}\right)= 2A(x) for any xx, ∣x∣<1\lvert x\rvert < 1

A: The function A(x)A(x) is defined as the integral of 11+t2\frac{1}{1+t^2} from 00 to xx. In other words, A(x)=∫0xdt1+t2A(x) = \int_0^x \frac{dt}{1+t^2}.

A: We have shown that A(2x1βˆ’x2)=2A(x)A\left(\frac{2x}{1-x^2}\right) = 2A(x) for any xx such that ∣x∣<1\lvert x\rvert < 1.

A: We used the technique of change of variable to derive the relationship between A(x)A(x) and A(2x1βˆ’x2)A\left(\frac{2x}{1-x^2}\right). We substituted t=tan⁑θt = \tan\theta into the integral and then used the trigonometric identity tan⁑(2ΞΈ)=2tan⁑θ1βˆ’tan⁑2ΞΈ\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta} to simplify the expression.

A: The condition ∣x∣<1\lvert x\rvert < 1 is necessary to ensure that the function A(x)A(x) is well-defined. If ∣x∣β‰₯1\lvert x\rvert \geq 1, then the integral ∫0xdt1+t2\int_0^x \frac{dt}{1+t^2} may not converge.

A: Yes, here is an example. Suppose we want to evaluate the definite integral ∫01dt1+t2\int_0^1 \frac{dt}{1+t^2}. We can use the relationship between A(x)A(x) and A(2x1βˆ’x2)A\left(\frac{2x}{1-x^2}\right) to simplify the evaluation of this integral.

Substitution

Let x=2t1+t2x = \frac{2t}{1+t^2}. Then, we have:

∫01dt1+t2=∫011+t21+t2dt=∫011dt=1\int_0^1 \frac{dt}{1+t^2} = \int_0^1 \frac{1+t^2}{1+t^2} dt = \int_0^1 1 dt = 1

Expression for A(1)A(1)

We can now express A(1)A(1) as:

A(1)=∫01dt1+t2=1A(1) = \int_0^1 \frac{dt}{1+t^2} = 1

Relationship between A(1)A(1) and A(21βˆ’1)A\left(\frac{2}{1-1}\right)

We can now establish a relationship between A(1)A(1) and A(21βˆ’1)A\left(\frac{2}{1-1}\right).

Derivation

We have:

A(21βˆ’1)=tanβ‘βˆ’1(21βˆ’1)A\left(\frac{2}{1-1}\right) = \tan^{-1}\left(\frac{2}{1-1}\right)

We can also express 21βˆ’1\frac{2}{1-1} as:

21βˆ’1=tan⁑(∞)\frac{2}{1-1} = \tan(\infty)

where ΞΈ=tanβ‘βˆ’11\theta = \tan^{-1}1.

Substitution

Let ΞΈ=tanβ‘βˆ’11\theta = \tan^{-1}1. Then, we have:

A(21βˆ’1)=tanβ‘βˆ’1(tan⁑(∞))=Ο€2A\left(\frac{2}{1-1}\right) = \tan^{-1}\left(\tan(\infty)\right) = \frac{\pi}{2}

Expression for A(21βˆ’1)A\left(\frac{2}{1-1}\right)

We can now express A(21βˆ’1)A\left(\frac{2}{1-1}\right) as:

A(21βˆ’1)=Ο€2A\left(\frac{2}{1-1}\right) = \frac{\pi}{2}

Relationship between A(1)A(1) and A(21βˆ’1)A\left(\frac{2}{1-1}\right)

We can now establish a relationship between A(1)A(1) and A(21βˆ’1)A\left(\frac{2}{1-1}\right).

Derivation

We have:

A(21βˆ’1)=Ο€2A\left(\frac{2}{1-1}\right) = \frac{\pi}{2}

We also have:

A(1)=1A(1) = 1

Conclusion

We have shown that A(21βˆ’1)=Ο€2A\left(\frac{2}{1-1}\right) = \frac{\pi}{2} and A(1)=1A(1) = 1. This result can be used to simplify the evaluation of definite integrals involving the function 11+t2\frac{1}{1+t^2}.

The final answer is: Ο€2\boxed{\frac{\pi}{2}}