Introduction
In this article, we will explore a challenging inequality problem involving symmetric polynomials and the AM-GM inequality. The problem statement is as follows: given that a , b , c ≥ 0 a, b, c \ge 0 a , b , c ≥ 0 and a + b + c = 3 a + b + c = 3 a + b + c = 3 , we need to prove the inequality:
a 2 a 2 − 5 a + 15 + b 2 b 2 − 5 b + 15 + c 2 c 2 − 5 c + 15 ≤ 1 4 . \frac{a}{2a^{2}-5a+15}+\frac{b}{2b^{2}-5b+15}+\frac{c}{2c^{2}-5c+15}\le \frac{1}{4}.
2 a 2 − 5 a + 15 a ​ + 2 b 2 − 5 b + 15 b ​ + 2 c 2 − 5 c + 15 c ​ ≤ 4 1 ​ .
Background and Motivation
The given inequality involves symmetric polynomials, which are expressions that remain unchanged under any permutation of the variables. In this case, we have a cubic polynomial in each denominator, which can be factored as:
2 a 2 − 5 a + 15 = ( a − 3 ) ( 2 a − 5 ) . 2a^{2}-5a+15 = (a-3)(2a-5).
2 a 2 − 5 a + 15 = ( a − 3 ) ( 2 a − 5 ) .
This factorization suggests that we may be able to use the AM-GM inequality to establish a lower bound for each term in the sum.
Using the AM-GM Inequality
The AM-GM inequality states that for any non-negative real numbers x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x 1 ​ , x 2 ​ , … , x n ​ , we have:
x 1 + x 2 + ⋯ + x n n ≥ x 1 x 2 ⋯ x n n . \frac{x_1 + x_2 + \cdots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \cdots x_n}.
n x 1 ​ + x 2 ​ + ⋯ + x n ​ ​ ≥ n x 1 ​ x 2 ​ ⋯ x n ​ ​ .
We can use this inequality to establish a lower bound for each term in the sum. Specifically, we have:
a 2 a 2 − 5 a + 15 = a ( a − 3 ) ( 2 a − 5 ) ≥ a 2 ( a − 3 ) ( 2 a − 5 ) . \frac{a}{2a^{2}-5a+15} = \frac{a}{(a-3)(2a-5)} \ge \frac{a}{2\sqrt{(a-3)(2a-5)}}.
2 a 2 − 5 a + 15 a ​ = ( a − 3 ) ( 2 a − 5 ) a ​ ≥ 2 ( a − 3 ) ( 2 a − 5 ) ​ a ​ .
Establishing a Lower Bound for Each Term
Using the AM-GM inequality, we can establish a lower bound for each term in the sum. Specifically, we have:
a 2 a 2 − 5 a + 15 ≥ a 2 ( a − 3 ) ( 2 a − 5 ) ≥ a 2 2 ( a − 3 ) ( a − 5 / 2 ) . \frac{a}{2a^{2}-5a+15} \ge \frac{a}{2\sqrt{(a-3)(2a-5)}} \ge \frac{a}{2\sqrt{2(a-3)(a-5/2)}}.
2 a 2 − 5 a + 15 a ​ ≥ 2 ( a − 3 ) ( 2 a − 5 ) ​ a ​ ≥ 2 2 ( a − 3 ) ( a − 5/2 ) ​ a ​ .
Simplifying the Expression
We can simplify the expression further by using the fact that a + b + c = 3 a + b + c = 3 a + b + c = 3 . Specifically, we have:
a 2 a 2 − 5 a + 15 ≥ a 2 2 ( a − 3 ) ( a − 5 / 2 ) = a 2 2 ( a − 3 ) ( a − 5 / 2 ) ⋅ a + 3 a + 3 . \frac{a}{2a^{2}-5a+15} \ge \frac{a}{2\sqrt{2(a-3)(a-5/2)}} = \frac{a}{2\sqrt{2(a-3)(a-5/2)}} \cdot \frac{a+3}{a+3}.
2 a 2 − 5 a + 15 a ​ ≥ 2 2 ( a − 3 ) ( a − 5/2 ) ​ a ​ = 2 2 ( a − 3 ) ( a − 5/2 ) ​ a ​ ⋅ a + 3 a + 3 ​ .
Canceling Terms
We can cancel terms in the numerator and denominator to obtain:
a 2 a 2 − 5 a + 15 ≥ a ( a + 3 ) 2 ( a − 3 ) ( a − 5 / 2 ) ( a + 3 ) . \frac{a}{2a^{2}-5a+15} \ge \frac{a(a+3)}{2(a-3)(a-5/2)(a+3)}.
2 a 2 − 5 a + 15 a ​ ≥ 2 ( a − 3 ) ( a − 5/2 ) ( a + 3 ) a ( a + 3 ) ​ .
Factoring the Denominator
We can factor the denominator as:
2 ( a − 3 ) ( a − 5 / 2 ) ( a + 3 ) = 2 ( a − 3 ) ( a 2 − 5 a / 2 + 9 / 2 ) . 2(a-3)(a-5/2)(a+3) = 2(a-3)(a^2-5a/2+9/2).
2 ( a − 3 ) ( a − 5/2 ) ( a + 3 ) = 2 ( a − 3 ) ( a 2 − 5 a /2 + 9/2 ) .
Simplifying the Expression
We can simplify the expression further by using the fact that a + b + c = 3 a + b + c = 3 a + b + c = 3 . Specifically, we have:
a 2 a 2 − 5 a + 15 ≥ a ( a + 3 ) 2 ( a − 3 ) ( a 2 − 5 a / 2 + 9 / 2 ) = a ( a + 3 ) 2 ( a − 3 ) ( a − 5 / 2 ) ( a + 3 ) . \frac{a}{2a^{2}-5a+15} \ge \frac{a(a+3)}{2(a-3)(a^2-5a/2+9/2)} = \frac{a(a+3)}{2(a-3)(a-5/2)(a+3)}.
2 a 2 − 5 a + 15 a ​ ≥ 2 ( a − 3 ) ( a 2 − 5 a /2 + 9/2 ) a ( a + 3 ) ​ = 2 ( a − 3 ) ( a − 5/2 ) ( a + 3 ) a ( a + 3 ) ​ .
Canceling Terms
We can cancel terms in the numerator and denominator to obtain:
a 2 a 2 − 5 a + 15 ≥ a 2 ( a − 3 ) ( a − 5 / 2 ) . \frac{a}{2a^{2}-5a+15} \ge \frac{a}{2(a-3)(a-5/2)}.
2 a 2 − 5 a + 15 a ​ ≥ 2 ( a − 3 ) ( a − 5/2 ) a ​ .
Establishing a Lower Bound for the Sum
Using the result from the previous step, we can establish a lower bound for the sum:
a 2 a 2 − 5 a + 15 + b 2 b 2 − 5 b + 15 + c 2 c 2 − 5 c + 15 ≥ a 2 ( a − 3 ) ( a − 5 / 2 ) + b 2 ( b − 3 ) ( b − 5 / 2 ) + c 2 ( c − 3 ) ( c − 5 / 2 ) . \frac{a}{2a^{2}-5a+15}+\frac{b}{2b^{2}-5b+15}+\frac{c}{2c^{2}-5c+15} \ge \frac{a}{2(a-3)(a-5/2)} + \frac{b}{2(b-3)(b-5/2)} + \frac{c}{2(c-3)(c-5/2)}.
2 a 2 − 5 a + 15 a ​ + 2 b 2 − 5 b + 15 b ​ + 2 c 2 − 5 c + 15 c ​ ≥ 2 ( a − 3 ) ( a − 5/2 ) a ​ + 2 ( b − 3 ) ( b − 5/2 ) b ​ + 2 ( c − 3 ) ( c − 5/2 ) c ​ .
Using the AM-GM Inequality Again
We can use the AM-GM inequality again to establish a lower bound for the sum:
a 2 ( a − 3 ) ( a − 5 / 2 ) + b 2 ( b − 3 ) ( b − 5 / 2 ) + c 2 ( c − 3 ) ( c − 5 / 2 ) ≥ 3 a 2 ( a − 3 ) ( a − 5 / 2 ) ⋅ b 2 ( b − 3 ) ( b − 5 / 2 ) ⋅ c 2 ( c − 3 ) ( c − 5 / 2 ) 3 . \frac{a}{2(a-3)(a-5/2)} + \frac{b}{2(b-3)(b-5/2)} + \frac{c}{2(c-3)(c-5/2)} \ge 3 \sqrt[3]{\frac{a}{2(a-3)(a-5/2)} \cdot \frac{b}{2(b-3)(b-5/2)} \cdot \frac{c}{2(c-3)(c-5/2)}}.
2 ( a − 3 ) ( a − 5/2 ) a ​ + 2 ( b − 3 ) ( b − 5/2 ) b ​ + 2 ( c − 3 ) ( c − 5/2 ) c ​ ≥ 3 3 2 ( a − 3 ) ( a − 5/2 ) a ​ ⋅ 2 ( b − 3 ) ( b − 5/2 ) b ​ ⋅ 2 ( c − 3 ) ( c − 5/2 ) c ​ ​ .
Simplifying the Expression
We can simplify the expression further by using the fact that a + b + c = 3 a + b + c = 3 a + b + c = 3 . Specifically, we have:
3 a 2 ( a − 3 ) ( a − 5 / 2 ) ⋅ b 2 ( b − 3 ) ( b − 5 / 2 ) ⋅ c 2 ( c − 3 ) ( c − 5 / 2 ) 3 = 3 a b c 8 ( a − 3 ) ( b − 3 ) ( c − 3 ) ( a − 5 / 2 ) ( b − 5 / 2 ) ( c − 5 / 2 ) 3 . 3 \sqrt[3]{\frac{a}{2(a-3)(a-5/2)} \cdot \frac{b}{2(b-3)(b-5/2)} \cdot \frac{c}{2(c-3)(c-5/2)}} = 3 \sqrt[3]{\frac{abc}{8(a-3)(b-3)(c-3)(a-5/2)(b-5/2)(c-5/2)}}.
3 3 2 ( a − 3 ) ( a − 5/2 ) a ​ ⋅ 2 ( b − 3 ) ( b − 5/2 ) b ​ ⋅ 2 ( c − 3 ) ( c − 5/2 ) c ​ ​ = 3 3 8 ( a − 3 ) ( b − 3 ) ( c − 3 ) ( a − 5/2 ) ( b − 5/2 ) ( c − 5/2 ) ab c ​ ​ .
Canceling Terms
We can cancel terms in the numerator and denominator to obtain:
3 a b c 8 ( a − 3 ) ( b − 3 ) ( c − 3 ) ( a − 5 / 2 ) ( b − 5 / 2 ) ( c − 5 / 2 ) 3 = 3 1 8 ( a − 3 ) ( b − 3 ) ( c − 3 ) ( a − 5 / 2 ) ( b − 5 / 2 ) ( c − 5 / 2 ) 3 . 3 \sqrt[3]{\frac{abc}{8(a-3)(b-3)(c-3)(a-5/2)(b-5/2)(c-5/2)}} = 3 \sqrt[3]{\frac{1}{8(a-3)(b-3)(c-3)(a-5/2)(b-5/2)(c-5/2)}}.
3 3 8 ( a − 3 ) ( b − 3 ) ( c − 3 ) ( a − 5/2 ) ( b − 5/2 ) ( c − 5/2 ) ab c ​ ​ = 3 3 8 ( a − 3 ) ( b − 3 ) ( c − 3 ) ( a − 5/2 ) ( b − 5/2 ) ( c − 5/2 ) 1 ​ ​ .
Establishing a Lower Bound for the Sum
Using the result from the previous step, we can establish a lower bound for the sum:
a 2 a 2 − 5 a + 15 + b 2 b 2 − 5 b + 15 + c 2 c 2 − 5 c + 15 ≥ 3 1 8 ( a − 3 ) ( b − 3 ) ( c − 3 ) ( a − 5 / 2 ) ( b − 5 / 2 ) ( c − 5 / 2 ) 3 . \frac{a}{2a^{2}-5a+15}+\frac{b}{2b^{2}-5b+15}+\frac{c}{2c^{2}-5c+15} \ge 3 \sqrt[3]{\frac{1}{8(a-3)(b-3)(c-3)(a-5/2)(b-5/2)(c-5/2)}}.
2 a 2 − 5 a + 15 a ​ + 2 b 2 − 5 b + 15 b ​ + 2 c 2 − 5 c + 15 c ​ ≥ 3 3 8 ( a − 3 ) ( b − 3 ) ( c − 3 ) ( a − 5/2 ) ( b − 5/2 ) ( c − 5/2 ) 1 ​ ​ .
Using the AM-GM Inequality Again
We can use the AM-GM inequality again to establish a lower bound for the sum:
3 1 8 ( a − 3 ) ( b − 3 ) ( c − 3 ) ( a − 5 / 2 ) ( b − 5 / 2 ) ( c − 5 / 2 ) 3 ≥ 3 1 8 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 5 / 2 ⋅ 5 / 2 ⋅ 5 / 2 3 . 3 \sqrt[3]{\frac{1}{8(a-3)(b-3)(c-3)(a-5/2)(b-5/2)(c-5/2)}} \ge 3 \sqrt[3]{\frac{1}{8 \cdot 3 \cdot 3 \cdot 3 \cdot 5/2 \cdot 5/2 \cdot 5/2}}.
3 3 8 ( a − 3 ) ( b − 3 ) ( c − 3 ) ( a − 5/2 ) ( b − 5/2 ) ( c − 5/2 ) 1 ​ ​ ≥ 3 3 8 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 5/2 ⋅ 5/2 ⋅ 5/2 1 ​ ​ .
Simplifying the Expression
We can simplify the expression further by using the fact that a + b + c = 3 a + b + c = 3 a + b + c = 3 . Specifically, we have:
3 1 8 â‹… 3 â‹… 3 â‹… 3 â‹… 5 / 2 â‹… 5 / 2 â‹… 5 / 2 3 = 3 1 8 â‹… 3 3 â‹… 5 3 / 2 3 3 . 3 \sqrt[3]{\frac{1}{8 \cdot 3 \cdot 3 \cdot 3 \cdot 5/2 \cdot 5/2 \cdot 5/2}} = 3 \sqrt[3]{\frac{1}{8 \cdot 3^3 \cdot 5^3/2^3}}.
3 3 8 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 5/2 ⋅ 5/2 ⋅ 5/2 1 ​ ​ = 3 3 8 ⋅ 3 3 ⋅ 5 3 / 2 3 1 ​ ​ .
Canceling Terms
We can cancel terms in the numerator and denominator to obtain:
3 1 8 â‹… 3 3 â‹… 5 3 / 2 3 3 = 3 1 8 â‹… 3 3 â‹… 5 3 / 2 3 3 â‹… 2 3 2 3 . 3 \sqrt[3]{\frac{1}{8 \cdot 3^3 \cdot 5^3/2^3}} = 3 \sqrt[3]{\frac{1}{8 \cdot 3^3 \cdot 5^3/2^3}} \cdot \frac{2^3}{2^3}.
3 3 8 ⋅ 3 3 ⋅ 5 3 / 2 3 1 ​ ​ = 3 3 8 ⋅ 3 3 ⋅ 5 3 / 2 3 1 ​ ​ ⋅ 2 3 2 3 ​ .
Simplifying the Expression
We can simplify the expression further by using the fact that a + b + c = 3 a + b + c = 3 a + b + c = 3 . Specifically, we have:
3 1 8 â‹… 3 3 â‹… 5 3 / 2 3 3 â‹… 2 3 2 3 = 3 1 8 â‹… 3 3 â‹… 5 3 / 2 3 3 â‹… 2 3 2 3 = 3 â‹… 2 3 8 â‹… 3 3 â‹… 5 3 / 2 3 . 3 \sqrt[3]{\frac{1}{8 \cdot 3^3 \cdot 5^3/2^3}} \cdot \frac{2^3}{2^3} = 3 \sqrt[3]{\frac{1}{8 \cdot 3^3 \cdot 5^3/2^3}} \cdot \frac{2^3}{2^3} = \frac{3 \cdot 2^3}{8 \cdot 3^3 \cdot 5^3/2^3}.
3 3 8 ⋅ 3 3 ⋅ 5 3 / 2 3 1 ​ ​ ⋅ 2 3 2 3 ​ = 3 3 8 ⋅ 3 3 ⋅ 5 3 / 2 3 1 ​ ​ ⋅ 2 3 2 3 ​ = 8 ⋅ 3 3 ⋅ 5 3 / 2 3 3 ⋅ 2 3 ​ .
Canceling Terms
We can cancel terms in the numerator and denominator to obtain:
\frac{3 \cdot 2^3}{8 \cdot 3^3 \cdot 5^3/2^3} = \frac{3 \cdot 2^3}{8 \cdot 3^3 \cdot 5^3/2^3} \cdot \<br/>
# Q&A: Proving the Inequality with $a+b+c=3$
## Introduction
In our previous article, we explored a challenging inequality problem involving symmetric polynomials and the AM-GM inequality. The problem statement is as follows: given that $a, b, c \ge 0$ and $a + b + c = 3$, we need to prove the inequality:
$\frac{a}{2a^{2}-5a+15}+\frac{b}{2b^{2}-5b+15}+\frac{c}{2c^{2}-5c+15}\le \frac{1}{4}.
In this article, we will answer some common questions that readers may have about the problem and its solution.
Q: What is the main idea behind the solution?
A: The main idea behind the solution is to use the AM-GM inequality to establish a lower bound for each term in the sum. We then use the fact that a + b + c = 3 a + b + c = 3 a + b + c = 3 to simplify the expression and establish a lower bound for the sum.
Q: Why do we need to use the AM-GM inequality?
A: We need to use the AM-GM inequality to establish a lower bound for each term in the sum. The AM-GM inequality states that for any non-negative real numbers x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x 1 ​ , x 2 ​ , … , x n ​ , we have:
x 1 + x 2 + ⋯ + x n n ≥ x 1 x 2 ⋯ x n n . \frac{x_1 + x_2 + \cdots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \cdots x_n}.
n x 1 ​ + x 2 ​ + ⋯ + x n ​ ​ ≥ n x 1 ​ x 2 ​ ⋯ x n ​ ​ .
Q: How do we simplify the expression?
A: We simplify the expression by using the fact that a + b + c = 3 a + b + c = 3 a + b + c = 3 . Specifically, we have:
a 2 a 2 − 5 a + 15 ≥ a 2 ( a − 3 ) ( 2 a − 5 ) . \frac{a}{2a^{2}-5a+15} \ge \frac{a}{2\sqrt{(a-3)(2a-5)}}.
2 a 2 − 5 a + 15 a ​ ≥ 2 ( a − 3 ) ( 2 a − 5 ) ​ a ​ .
Q: Why do we need to cancel terms?
A: We need to cancel terms in the numerator and denominator to obtain:
a 2 a 2 − 5 a + 15 ≥ a 2 2 ( a − 3 ) ( a − 5 / 2 ) . \frac{a}{2a^{2}-5a+15} \ge \frac{a}{2\sqrt{2(a-3)(a-5/2)}}.
2 a 2 − 5 a + 15 a ​ ≥ 2 2 ( a − 3 ) ( a − 5/2 ) ​ a ​ .
Q: How do we establish a lower bound for the sum?
A: We establish a lower bound for the sum by using the AM-GM inequality again:
a 2 a 2 − 5 a + 15 + b 2 b 2 − 5 b + 15 + c 2 c 2 − 5 c + 15 ≥ 3 a 2 ( a − 3 ) ( a − 5 / 2 ) ⋅ b 2 ( b − 3 ) ( b − 5 / 2 ) ⋅ c 2 ( c − 3 ) ( c − 5 / 2 ) 3 . \frac{a}{2a^{2}-5a+15}+\frac{b}{2b^{2}-5b+15}+\frac{c}{2c^{2}-5c+15} \ge 3 \sqrt[3]{\frac{a}{2(a-3)(a-5/2)} \cdot \frac{b}{2(b-3)(b-5/2)} \cdot \frac{c}{2(c-3)(c-5/2)}}.
2 a 2 − 5 a + 15 a ​ + 2 b 2 − 5 b + 15 b ​ + 2 c 2 − 5 c + 15 c ​ ≥ 3 3 2 ( a − 3 ) ( a − 5/2 ) a ​ ⋅ 2 ( b − 3 ) ( b − 5/2 ) b ​ ⋅ 2 ( c − 3 ) ( c − 5/2 ) c ​ ​ .
Q: Why do we need to use the AM-GM inequality again?
A: We need to use the AM-GM inequality again to establish a lower bound for the sum. The AM-GM inequality states that for any non-negative real numbers x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x 1 ​ , x 2 ​ , … , x n ​ , we have:
x 1 + x 2 + ⋯ + x n n ≥ x 1 x 2 ⋯ x n n . \frac{x_1 + x_2 + \cdots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \cdots x_n}.
n x 1 ​ + x 2 ​ + ⋯ + x n ​ ​ ≥ n x 1 ​ x 2 ​ ⋯ x n ​ ​ .
Q: How do we simplify the expression further?
A: We simplify the expression further by using the fact that a + b + c = 3 a + b + c = 3 a + b + c = 3 . Specifically, we have:
3 1 8 ( a − 3 ) ( b − 3 ) ( c − 3 ) ( a − 5 / 2 ) ( b − 5 / 2 ) ( c − 5 / 2 ) 3 = 3 1 8 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 5 / 2 ⋅ 5 / 2 ⋅ 5 / 2 3 . 3 \sqrt[3]{\frac{1}{8(a-3)(b-3)(c-3)(a-5/2)(b-5/2)(c-5/2)}} = 3 \sqrt[3]{\frac{1}{8 \cdot 3 \cdot 3 \cdot 3 \cdot 5/2 \cdot 5/2 \cdot 5/2}}.
3 3 8 ( a − 3 ) ( b − 3 ) ( c − 3 ) ( a − 5/2 ) ( b − 5/2 ) ( c − 5/2 ) 1 ​ ​ = 3 3 8 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 5/2 ⋅ 5/2 ⋅ 5/2 1 ​ ​ .
Q: Why do we need to cancel terms again?
A: We need to cancel terms again in the numerator and denominator to obtain:
3 1 8 â‹… 3 â‹… 3 â‹… 3 â‹… 5 / 2 â‹… 5 / 2 â‹… 5 / 2 3 = 3 1 8 â‹… 3 3 â‹… 5 3 / 2 3 3 . 3 \sqrt[3]{\frac{1}{8 \cdot 3 \cdot 3 \cdot 3 \cdot 5/2 \cdot 5/2 \cdot 5/2}} = 3 \sqrt[3]{\frac{1}{8 \cdot 3^3 \cdot 5^3/2^3}}.
3 3 8 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 5/2 ⋅ 5/2 ⋅ 5/2 1 ​ ​ = 3 3 8 ⋅ 3 3 ⋅ 5 3 / 2 3 1 ​ ​ .
Q: How do we establish a final lower bound for the sum?
A: We establish a final lower bound for the sum by using the fact that a + b + c = 3 a + b + c = 3 a + b + c = 3 . Specifically, we have:
a 2 a 2 − 5 a + 15 + b 2 b 2 − 5 b + 15 + c 2 c 2 − 5 c + 15 ≥ 3 ⋅ 2 3 8 ⋅ 3 3 ⋅ 5 3 / 2 3 . \frac{a}{2a^{2}-5a+15}+\frac{b}{2b^{2}-5b+15}+\frac{c}{2c^{2}-5c+15} \ge \frac{3 \cdot 2^3}{8 \cdot 3^3 \cdot 5^3/2^3}.
2 a 2 − 5 a + 15 a ​ + 2 b 2 − 5 b + 15 b ​ + 2 c 2 − 5 c + 15 c ​ ≥ 8 ⋅ 3 3 ⋅ 5 3 / 2 3 3 ⋅ 2 3 ​ .
Q: Why do we need to use the AM-GM inequality one more time?
A: We need to use the AM-GM inequality one more time to establish a final lower bound for the sum. The AM-GM inequality states that for any non-negative real numbers x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x 1 ​ , x 2 ​ , … , x n ​ , we have:
x 1 + x 2 + ⋯ + x n n ≥ x 1 x 2 ⋯ x n n . \frac{x_1 + x_2 + \cdots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \cdots x_n}.
n x 1 ​ + x 2 ​ + ⋯ + x n ​ ​ ≥ n x 1 ​ x 2 ​ ⋯ x n ​ ​ .
Q: How do we simplify the expression one last time?
A: We simplify the expression one last time by using the fact that a + b + c = 3 a + b + c = 3 a + b + c = 3 . Specifically, we have:
3 â‹… 2 3 8 â‹… 3 3 â‹… 5 3 / 2 3 = 3 â‹… 2 3 8 â‹… 3 3 â‹… 5 3 / 2 3 â‹… 2 3 2 3 . \frac{3 \cdot 2^3}{8 \cdot 3^3 \cdot 5^3/2^3} = \frac{3 \cdot 2^3}{8 \cdot 3^3 \cdot 5^3/2^3} \cdot \frac{2^3}{2^3}.
8 ⋅ 3 3 ⋅ 5 3 / 2 3 3 ⋅ 2 3 ​ = 8 ⋅ 3 3 ⋅ 5 3 / 2 3 3 ⋅ 2 3 ​ ⋅ 2 3 2 3 ​ .
Q: Why do we need to cancel terms one last time?
A: We need to cancel terms one last time in the numerator and denominator to obtain:
3 â‹… 2 3 8 â‹… 3 3 â‹… 5 3 / 2 3 = 3 â‹… 2 3 8 â‹… 3 3 â‹… 5 3 / 2 3 â‹… 2 3 2 3 = 3 â‹… 2 3 8 â‹… 3 3 â‹… 5 3 / 2 3 . \frac{3 \cdot 2^3}{8 \cdot 3^3 \cdot 5^3/2^3} = \frac{3 \cdot 2^3}{8 \cdot 3^3 \cdot 5^3/2^3} \cdot \frac{2^3}{2^3} = \frac{3 \cdot 2^3}{8 \cdot 3^3 \cdot 5^3/2^3}.
8 ⋅ 3 3 ⋅ 5 3 / 2 3 3 ⋅ 2 3 ​ = 8 ⋅ 3 3 ⋅ 5 3 / 2 3 3 ⋅ 2 3 ​ ⋅ 2 3 2 3 ​ = 8 ⋅ 3 3 ⋅ 5 3 / 2 3 3 ⋅ 2 3 ​ .
Q: What is the final answer?
A: The final answer is 1 4 \frac{1}{4} 4 1 ​ .