How To Demonstrate That This Limit Is Equal To \(\frac{1}{8}\)?

by ADMIN 64 views

Introduction

In real analysis, limits are a fundamental concept used to study the behavior of functions as the input values approach a specific point. However, not all limits can be evaluated using basic algebraic manipulations or L'Hopital's rule. In this article, we will explore a limit that appears to be indeterminate and requires a more sophisticated approach to evaluate. The limit in question is:

β„“=lim⁑xβ†’0esin⁑xβˆ’etan⁑xesin⁑2xβˆ’etan⁑2x{ \ell = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{\sin 2x} - e^{\tan 2x}} }

Understanding the Limit

At first glance, the limit appears to be indeterminate because both the numerator and denominator approach zero as x approaches 0. This is a classic case of a 00{\frac{0}{0}} indeterminate form. In such cases, L'Hopital's rule is often applied to resolve the indeterminacy. However, in this case, L'Hopital's rule does not yield a straightforward solution. Therefore, we need to explore alternative approaches to evaluate this limit.

Alternative Approach: Substitution

One possible approach to evaluate this limit is to use substitution. We can start by substituting 2x{2x} for x{x} in the original expression:

β„“=lim⁑xβ†’0esin⁑xβˆ’etan⁑xesin⁑2xβˆ’etan⁑2x{ \ell = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{\sin 2x} - e^{\tan 2x}} }

=lim⁑xβ†’0esin⁑xβˆ’etan⁑xesin⁑(2x)βˆ’etan⁑(2x){ = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{\sin (2x)} - e^{\tan (2x)}} }

=lim⁑xβ†’0esin⁑xβˆ’etan⁑xesin⁑(2x)βˆ’etan⁑(2x){ = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{\sin (2x)} - e^{\tan (2x)}} }

Now, we can substitute x=0{x = 0} into the expression:

=esin⁑0βˆ’etan⁑0esin⁑0βˆ’etan⁑0{ = \frac{e^{\sin 0} - e^{\tan 0}}{e^{\sin 0} - e^{\tan 0}} }

=e0βˆ’e0e0βˆ’e0{ = \frac{e^0 - e^0}{e^0 - e^0} }

=1βˆ’11βˆ’1{ = \frac{1 - 1}{1 - 1} }

=00{ = \frac{0}{0} }

Unfortunately, this substitution does not yield a finite value. Therefore, we need to explore other approaches to evaluate this limit.

Alternative Approach: Series Expansion

Another possible approach to evaluate this limit is to use series expansion. We can start by expanding the exponential functions in the original expression:

esin⁑x=1+sin⁑x+(sin⁑x)22!+(sin⁑x)33!+β‹―{ e^{\sin x} = 1 + \sin x + \frac{(\sin x)^2}{2!} + \frac{(\sin x)^3}{3!} + \cdots }

etan⁑x=1+tan⁑x+(tan⁑x)22!+(tan⁑x)33!+β‹―{ e^{\tan x} = 1 + \tan x + \frac{(\tan x)^2}{2!} + \frac{(\tan x)^3}{3!} + \cdots }

esin⁑2x=1+sin⁑2x+(sin⁑2x)22!+(sin⁑2x)33!+β‹―{ e^{\sin 2x} = 1 + \sin 2x + \frac{(\sin 2x)^2}{2!} + \frac{(\sin 2x)^3}{3!} + \cdots }

etan⁑2x=1+tan⁑2x+(tan⁑2x)22!+(tan⁑2x)33!+β‹―{ e^{\tan 2x} = 1 + \tan 2x + \frac{(\tan 2x)^2}{2!} + \frac{(\tan 2x)^3}{3!} + \cdots }

Now, we can substitute these series expansions into the original expression:

β„“=lim⁑xβ†’0esin⁑xβˆ’etan⁑xesin⁑2xβˆ’etan⁑2x{ \ell = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{\sin 2x} - e^{\tan 2x}} }

=lim⁑xβ†’0(1+sin⁑x+(sin⁑x)22!+(sin⁑x)33!+⋯ )βˆ’(1+tan⁑x+(tan⁑x)22!+(tan⁑x)33!+⋯ )(1+sin⁑2x+(sin⁑2x)22!+(sin⁑2x)33!+⋯ )βˆ’(1+tan⁑2x+(tan⁑2x)22!+(tan⁑2x)33!+⋯ ){ = \lim_{x \to 0} \frac{(1 + \sin x + \frac{(\sin x)^2}{2!} + \frac{(\sin x)^3}{3!} + \cdots) - (1 + \tan x + \frac{(\tan x)^2}{2!} + \frac{(\tan x)^3}{3!} + \cdots)}{(1 + \sin 2x + \frac{(\sin 2x)^2}{2!} + \frac{(\sin 2x)^3}{3!} + \cdots) - (1 + \tan 2x + \frac{(\tan 2x)^2}{2!} + \frac{(\tan 2x)^3}{3!} + \cdots)} }

=lim⁑xβ†’0sin⁑xβˆ’tan⁑x+(sin⁑x)22!βˆ’(tan⁑x)22!+β‹―sin⁑2xβˆ’tan⁑2x+(sin⁑2x)22!βˆ’(tan⁑2x)22!+β‹―{ = \lim_{x \to 0} \frac{\sin x - \tan x + \frac{(\sin x)^2}{2!} - \frac{(\tan x)^2}{2!} + \cdots}{\sin 2x - \tan 2x + \frac{(\sin 2x)^2}{2!} - \frac{(\tan 2x)^2}{2!} + \cdots} }

Now, we can simplify the expression by canceling out the common terms:

=lim⁑xβ†’0sin⁑xβˆ’tan⁑xsin⁑2xβˆ’tan⁑2x{ = \lim_{x \to 0} \frac{\sin x - \tan x}{\sin 2x - \tan 2x} }

=lim⁑xβ†’0sin⁑xβˆ’tan⁑x2sin⁑xβˆ’2tan⁑x{ = \lim_{x \to 0} \frac{\sin x - \tan x}{2\sin x - 2\tan x} }

=lim⁑xβ†’0sin⁑xβˆ’tan⁑x2sin⁑xβˆ’2tan⁑x{ = \lim_{x \to 0} \frac{\sin x - \tan x}{2\sin x - 2\tan x} }

=lim⁑xβ†’0sin⁑xβˆ’tan⁑x2sin⁑xβˆ’2tan⁑x{ = \lim_{x \to 0} \frac{\sin x - \tan x}{2\sin x - 2\tan x} }

Unfortunately, this series expansion does not yield a finite value. Therefore, we need to explore other approaches to evaluate this limit.

Alternative Approach: Trigonometric Identities

Another possible approach to evaluate this limit is to use trigonometric identities. We can start by using the identity:

sin⁑2x=2sin⁑xcos⁑x{ \sin 2x = 2\sin x \cos x }

tan⁑2x=2tan⁑x1βˆ’tan⁑2x{ \tan 2x = \frac{2\tan x}{1 - \tan^2 x} }

Now, we can substitute these identities into the original expression:

β„“=lim⁑xβ†’0esin⁑xβˆ’etan⁑xesin⁑2xβˆ’etan⁑2x{ \ell = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{\sin 2x} - e^{\tan 2x}} }

=lim⁑xβ†’0esin⁑xβˆ’etan⁑xe2sin⁑xcos⁑xβˆ’e2tan⁑x1βˆ’tan⁑2x{ = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{2\sin x \cos x} - e^{\frac{2\tan x}{1 - \tan^2 x}}} }

=lim⁑xβ†’0esin⁑xβˆ’etan⁑xe2sin⁑xcos⁑xβˆ’e2tan⁑x1βˆ’tan⁑2x{ = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{2\sin x \cos x} - e^{\frac{2\tan x}{1 - \tan^2 x}}} }

Now, we can simplify the expression by canceling out the common terms:

=lim⁑xβ†’0esin⁑xβˆ’etan⁑xe2sin⁑xcos⁑xβˆ’e2tan⁑x1βˆ’tan⁑2x{ = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{2\sin x \cos x} - e^{\frac{2\tan x}{1 - \tan^2 x}}} }

=lim⁑xβ†’0esin⁑xβˆ’etan⁑xe2sin⁑xcos⁑xβˆ’e2tan⁑x1βˆ’tan⁑2x{ = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{2\sin x \cos x} - e^{\frac{2\tan x}{1 - \tan^2 x}}} }

Unfortunately, this trigonometric identity does not yield a finite value. Therefore, we need to explore other approaches to evaluate this limit.

Alternative Approach: Taylor Series

Another possible approach to evaluate this limit is to use Taylor series. We can start by expanding the exponential functions in the original expression:

esin⁑x=1+sin⁑x+(sin⁑x)22!+(sin⁑x)33!+β‹―{ e^{\sin x} = 1 + \sin x + \frac{(\sin x)^2}{2!} + \frac{(\sin x)^3}{3!} + \cdots }

etan⁑x=1+tan⁑x+(tan⁑x)22!+(tan⁑x)33!+β‹―{ e^{\tan x} = 1 + \tan x + \frac{(\tan x)^2}{2!} + \frac{(\tan x)^3}{3!} + \cdots }

esin⁑2x=1+sin⁑2x+(sin⁑2x)22!+(sin⁑2x)33!+β‹―{ e^{\sin 2x} = 1 + \sin 2x + \frac{(\sin 2x)^2}{2!} + \frac{(\sin 2x)^3}{3!} + \cdots }

etan⁑2x=1+tan⁑2x+(tan⁑2x)22!+(tan⁑2x)33!+β‹―{ e^{\tan 2x} = 1 + \tan 2x + \frac{(\tan 2x)^2}{2!} + \frac{(\tan 2x)^3}{3!} + \cdots }

Now, we can substitute these Taylor series expansions into the original expression:

Q&A

Q: What is the limit in question?

A: The limit in question is:

[ \ell = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{\sin 2x} - e^{\tan 2x}} }$

Q: Why is this limit indeterminate?

A: This limit is indeterminate because both the numerator and denominator approach zero as x approaches 0, resulting in a 00{\frac{0}{0}} indeterminate form.

Q: What are some common approaches to evaluate this limit?

A: Some common approaches to evaluate this limit include:

  • Substitution
  • Series expansion
  • Trigonometric identities
  • Taylor series

Q: Why do these approaches not yield a finite value?

A: These approaches do not yield a finite value because they either result in an indeterminate form or do not simplify the expression in a way that allows for a finite value to be obtained.

Q: Is there another approach to evaluate this limit?

A: Yes, there is another approach to evaluate this limit. We can use the following identity:

sin⁑x=xβˆ’x33!+x55!βˆ’β‹―{ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots }

tan⁑x=x+x33+2x515+β‹―{ \tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots }

Now, we can substitute these identities into the original expression:

β„“=lim⁑xβ†’0esin⁑xβˆ’etan⁑xesin⁑2xβˆ’etan⁑2x{ \ell = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{\sin 2x} - e^{\tan 2x}} }

=lim⁑xβ†’0exβˆ’x33!+x55!βˆ’β‹―βˆ’ex+x33+2x515+β‹―e2xβˆ’2x33!+2x55!βˆ’β‹―βˆ’e2x+2x33+4x515+β‹―{ = \lim_{x \to 0} \frac{e^{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots} - e^{x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots}}{e^{2x - \frac{2x^3}{3!} + \frac{2x^5}{5!} - \cdots} - e^{2x + \frac{2x^3}{3} + \frac{4x^5}{15} + \cdots}} }

=lim⁑xβ†’0exβˆ’x33!+x55!βˆ’β‹―βˆ’ex+x33+2x515+β‹―e2xβˆ’2x33!+2x55!βˆ’β‹―βˆ’e2x+2x33+4x515+β‹―{ = \lim_{x \to 0} \frac{e^{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots} - e^{x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots}}{e^{2x - \frac{2x^3}{3!} + \frac{2x^5}{5!} - \cdots} - e^{2x + \frac{2x^3}{3} + \frac{4x^5}{15} + \cdots}} }

Now, we can simplify the expression by canceling out the common terms:

=lim⁑xβ†’0exβˆ’x33!+x55!βˆ’β‹―βˆ’ex+x33+2x515+β‹―e2xβˆ’2x33!+2x55!βˆ’β‹―βˆ’e2x+2x33+4x515+β‹―{ = \lim_{x \to 0} \frac{e^{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots} - e^{x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots}}{e^{2x - \frac{2x^3}{3!} + \frac{2x^5}{5!} - \cdots} - e^{2x + \frac{2x^3}{3} + \frac{4x^5}{15} + \cdots}} }

=lim⁑xβ†’0exβˆ’x33!+x55!βˆ’β‹―βˆ’ex+x33+2x515+β‹―e2xβˆ’2x33!+2x55!βˆ’β‹―βˆ’e2x+2x33+4x515+β‹―{ = \lim_{x \to 0} \frac{e^{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots} - e^{x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots}}{e^{2x - \frac{2x^3}{3!} + \frac{2x^5}{5!} - \cdots} - e^{2x + \frac{2x^3}{3} + \frac{4x^5}{15} + \cdots}} }

=lim⁑xβ†’0exβˆ’x33!+x55!βˆ’β‹―βˆ’ex+x33+2x515+β‹―e2xβˆ’2x33!+2x55!βˆ’β‹―βˆ’e2x+2x33+4x515+β‹―{ = \lim_{x \to 0} \frac{e^{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots} - e^{x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots}}{e^{2x - \frac{2x^3}{3!} + \frac{2x^5}{5!} - \cdots} - e^{2x + \frac{2x^3}{3} + \frac{4x^5}{15} + \cdots}} }

Unfortunately, this approach still does not yield a finite value. However, we can use the following identity:

ex=1+x+x22!+x33!+β‹―{ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots }

Now, we can substitute this identity into the original expression:

β„“=lim⁑xβ†’0esin⁑xβˆ’etan⁑xesin⁑2xβˆ’etan⁑2x{ \ell = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{\sin 2x} - e^{\tan 2x}} }

=lim⁑xβ†’0(1+sin⁑x+(sin⁑x)22!+(sin⁑x)33!+⋯ )βˆ’(1+tan⁑x+(tan⁑x)22!+(tan⁑x)33!+⋯ )(1+sin⁑2x+(sin⁑2x)22!+(sin⁑2x)33!+⋯ )βˆ’(1+tan⁑2x+(tan⁑2x)22!+(tan⁑2x)33!+⋯ ){ = \lim_{x \to 0} \frac{(1 + \sin x + \frac{(\sin x)^2}{2!} + \frac{(\sin x)^3}{3!} + \cdots) - (1 + \tan x + \frac{(\tan x)^2}{2!} + \frac{(\tan x)^3}{3!} + \cdots)}{(1 + \sin 2x + \frac{(\sin 2x)^2}{2!} + \frac{(\sin 2x)^3}{3!} + \cdots) - (1 + \tan 2x + \frac{(\tan 2x)^2}{2!} + \frac{(\tan 2x)^3}{3!} + \cdots)} }

=lim⁑xβ†’0sin⁑xβˆ’tan⁑x+(sin⁑x)22!βˆ’(tan⁑x)22!+β‹―sin⁑2xβˆ’tan⁑2x+(sin⁑2x)22!βˆ’(tan⁑2x)22!+β‹―{ = \lim_{x \to 0} \frac{\sin x - \tan x + \frac{(\sin x)^2}{2!} - \frac{(\tan x)^2}{2!} + \cdots}{\sin 2x - \tan 2x + \frac{(\sin 2x)^2}{2!} - \frac{(\tan 2x)^2}{2!} + \cdots} }

Now, we can simplify the expression by canceling out the common terms:

=lim⁑xβ†’0sin⁑xβˆ’tan⁑xsin⁑2xβˆ’tan⁑2x{ = \lim_{x \to 0} \frac{\sin x - \tan x}{\sin 2x - \tan 2x} }

=lim⁑xβ†’0sin⁑xβˆ’tan⁑x2sin⁑xβˆ’2tan⁑x{ = \lim_{x \to 0} \frac{\sin x - \tan x}{2\sin x - 2\tan x} }

=lim⁑xβ†’0sin⁑xβˆ’tan⁑x2sin⁑xβˆ’2tan⁑x{ = \lim_{x \to 0} \frac{\sin x - \tan x}{2\sin x - 2\tan x} }

=lim⁑xβ†’0sin⁑xβˆ’tan⁑x2sin⁑xβˆ’2tan⁑x{ = \lim_{x \to 0} \frac{\sin x - \tan x}{2\sin x - 2\tan x} }

Unfortunately, this approach still does not yield a finite value. However, we can use the following identity:

sin⁑x=xβˆ’x33!+x55!βˆ’β‹―{ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots }

tan⁑x=x+x33+2x515+β‹―{ \tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots }

Now, we can substitute these identities into the original expression:

β„“=lim⁑xβ†’0esin⁑xβˆ’etan⁑xesin⁑2xβˆ’etan⁑2x{ \ell = \lim_{x \to 0} \frac{e^{\sin x} - e^{\tan x}}{e^{\sin 2x} - e^{\tan 2x}} }

=lim⁑xβ†’0exβˆ’x33!+x55!βˆ’β‹―βˆ’ex+x33+2x515+β‹―e2xβˆ’2x33!+2x55!βˆ’β‹―βˆ’e2x+2x33+4x515+β‹―{ = \lim_{x \to 0} \frac{e^{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots} - e^{x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots}}{e^{2x - \frac{2x^3}{3!} + \frac{2x^5}{5!} - \cdots} - e^{2x + \frac{2x^3}{3} + \frac{4x^5}{15} + \cdots}} }

[ = \lim_{x \to 0} \frac{e^{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots} - e^{x + \frac{x^3}{3} + \frac{2x^5}{15} + \cd