Given The Function $f(x)=\int_0^x \frac{1}{1+t^2} , Dt$, Find $f^{\prime}(x)$.(A) $f {\prime}(x)=\frac{1}{1+x 4}$(B) $ F ′ ( X ) = 2 X 1 + X 4 F^{\prime}(x)=\frac{2x}{1+x^4} F ′ ( X ) = 1 + X 4 2 X ​ [/tex](C) $f^{\prime}(x)=\arctan X^2$(D)

by ADMIN 249 views

Introduction

In calculus, the derivative of a function is a measure of how the function changes as its input changes. One of the fundamental theorems in calculus is the Fundamental Theorem of Calculus (FTC), which relates the derivative of a function to the definite integral of that function. In this article, we will explore how to find the derivative of a definite integral using the FTC.

The Fundamental Theorem of Calculus

The FTC states that if we have a function f(x)f(x) and we define a new function F(x)F(x) as the definite integral of f(x)f(x) from aa to xx, then the derivative of F(x)F(x) is equal to f(x)f(x). Mathematically, this can be expressed as:

F(x)=f(x)F^{\prime}(x) = f(x)

where F(x)=axf(t)dtF(x) = \int_{a}^{x} f(t) \, dt

Applying the Fundamental Theorem of Calculus

Now, let's apply the FTC to the given function:

f(x)=0x11+t2dtf(x) = \int_{0}^{x} \frac{1}{1+t^2} \, dt

We want to find the derivative of f(x)f(x), which is denoted as f(x)f^{\prime}(x). Using the FTC, we can write:

f(x)=ddx0x11+t2dtf^{\prime}(x) = \frac{d}{dx} \int_{0}^{x} \frac{1}{1+t^2} \, dt

Using the Chain Rule

To find the derivative of the definite integral, we can use the chain rule. The chain rule states that if we have a composite function of the form h(g(x))h(g(x)), then the derivative of h(g(x))h(g(x)) is equal to the derivative of hh evaluated at g(x)g(x), multiplied by the derivative of g(x)g(x). In this case, we can rewrite the definite integral as a composite function:

f(x)=0x11+t2dt=0x11+(t2)1dtf(x) = \int_{0}^{x} \frac{1}{1+t^2} \, dt = \int_{0}^{x} \frac{1}{1+(t^2)^1} \, dt

Now, we can apply the chain rule to find the derivative of f(x)f(x):

f(x)=ddx0x11+(t2)1dt=ddx0x11+(t2)1/2dtf^{\prime}(x) = \frac{d}{dx} \int_{0}^{x} \frac{1}{1+(t^2)^1} \, dt = \frac{d}{dx} \int_{0}^{x} \frac{1}{1+(t^2)^{1/2}} \, dt

Finding the Derivative of the Integrand

To find the derivative of the integrand, we can use the power rule of differentiation. The power rule states that if we have a function of the form xnx^n, then the derivative of xnx^n is equal to nxn1n \cdot x^{n-1}. In this case, we can rewrite the integrand as:

11+t2=11+(t2)1/2\frac{1}{1+t^2} = \frac{1}{1+(t^2)^{1/2}}

Now, we can apply the power rule to find the derivative of the integrand:

\frac{d}{dt} \frac{1}{1+t^2} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{d}{dt} \frac{1}{1+(t^2)^{1/2}} = \frac{<br/> **Q&A: Finding the Derivative of a Definite Integral** =====================================================

Q: What is the Fundamental Theorem of Calculus?

A: The Fundamental Theorem of Calculus (FTC) is a fundamental theorem in calculus that relates the derivative of a function to the definite integral of that function. It states that if we have a function f(x)f(x) and we define a new function F(x)F(x) as the definite integral of f(x)f(x) from aa to xx, then the derivative of F(x)F(x) is equal to f(x)f(x).

Q: How do I apply the Fundamental Theorem of Calculus to find the derivative of a definite integral?

A: To apply the FTC, you need to follow these steps:

  1. Define the function f(x)f(x) and the definite integral F(x)=axf(t)dtF(x) = \int_{a}^{x} f(t) \, dt
  2. Use the FTC to write the derivative of F(x)F(x) as F(x)=f(x)F^{\prime}(x) = f(x)
  3. Use the chain rule to find the derivative of the integrand
  4. Simplify the expression to find the final answer

Q: What is the chain rule?

A: The chain rule is a rule in calculus that allows us to find the derivative of a composite function. It states that if we have a composite function of the form h(g(x))h(g(x)), then the derivative of h(g(x))h(g(x)) is equal to the derivative of hh evaluated at g(x)g(x), multiplied by the derivative of g(x)g(x).

Q: How do I use the chain rule to find the derivative of a definite integral?

A: To use the chain rule, you need to follow these steps:

  1. Rewrite the definite integral as a composite function
  2. Apply the chain rule to find the derivative of the composite function
  3. Simplify the expression to find the final answer

Q: What is the power rule of differentiation?

A: The power rule of differentiation is a rule in calculus that allows us to find the derivative of a function of the form xnx^n. It states that the derivative of xnx^n is equal to nxn1n \cdot x^{n-1}.

Q: How do I use the power rule to find the derivative of a definite integral?

A: To use the power rule, you need to follow these steps:

  1. Rewrite the integrand as a function of the form xnx^n
  2. Apply the power rule to find the derivative of the integrand
  3. Simplify the expression to find the final answer

Q: What is the final answer to the problem?

A: The final answer to the problem is:

f^{\prime}(x) = \frac{2x}{1+x^4} </span></p> <p>This is the derivative of the definite integral <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>∫</mo><mn>0</mn><mi>x</mi></msubsup><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mtext> </mtext><mi>d</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">f(x) = \int_{0}^{x} \frac{1}{1+t^2} \, dt</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2626em;vertical-align:-0.4033em;"></span><span class="mop"><span class="mop op-symbol small-op" style="margin-right:0.19445em;position:relative;top:-0.0006em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8593em;"><span style="top:-2.3442em;margin-left:-0.1945em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span><span style="top:-3.2579em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.3558em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.4033em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span></span>.</p> <h2><strong>Conclusion</strong></h2> <p>In this article, we have discussed how to find the derivative of a definite integral using the Fundamental Theorem of Calculus and the chain rule. We have also discussed how to use the power rule of differentiation to find the derivative of a function of the form <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">x^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6644em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span></span></span>. We have applied these concepts to find the derivative of the definite integral <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>∫</mo><mn>0</mn><mi>x</mi></msubsup><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mtext> </mtext><mi>d</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">f(x) = \int_{0}^{x} \frac{1}{1+t^2} \, dt</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2626em;vertical-align:-0.4033em;"></span><span class="mop"><span class="mop op-symbol small-op" style="margin-right:0.19445em;position:relative;top:-0.0006em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8593em;"><span style="top:-2.3442em;margin-left:-0.1945em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span><span style="top:-3.2579em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.3558em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.4033em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span></span> and have obtained the final answer.</p> <h2><strong>References</strong></h2> <ul> <li>[1] &quot;Calculus&quot; by Michael Spivak</li> <li>[2] &quot;Calculus&quot; by James Stewart</li> <li>[3] &quot;The Fundamental Theorem of Calculus&quot; by Wolfram MathWorld</li> </ul> <h2><strong>Glossary</strong></h2> <ul> <li><strong>Definite integral</strong>: A type of integral that has a specific upper and lower bound.</li> <li><strong>Fundamental Theorem of Calculus</strong>: A theorem in calculus that relates the derivative of a function to the definite integral of that function.</li> <li><strong>Chain rule</strong>: A rule in calculus that allows us to find the derivative of a composite function.</li> <li><strong>Power rule of differentiation</strong>: A rule in calculus that allows us to find the derivative of a function of the form <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">x^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6644em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span></span></span>.</li> </ul>