Find The Limit. Use L'Hospital's Rule Where Appropriate. If There Is A More Elementary Method, Consider Using It.${ \lim_{x \rightarrow \pi / 2} (\sec(x) - \tan(x)) }$

by ADMIN 169 views

**Find the Limit: A Comprehensive Guide** =====================================

Introduction

Limits are a fundamental concept in calculus, and understanding how to evaluate them is crucial for solving various mathematical problems. In this article, we will explore the limit of the expression sec⁑(x)βˆ’tan⁑(x)\sec(x) - \tan(x) as xx approaches Ο€/2\pi/2. We will use L'Hospital's Rule where necessary and consider more elementary methods if available.

The Problem

The given problem is to find the limit of the expression sec⁑(x)βˆ’tan⁑(x)\sec(x) - \tan(x) as xx approaches Ο€/2\pi/2. This is a classic problem in calculus, and there are several methods to approach it.

Method 1: Elementary Method

One way to approach this problem is to use the fact that sec⁑(x)=1cos⁑(x)\sec(x) = \frac{1}{\cos(x)} and tan⁑(x)=sin⁑(x)cos⁑(x)\tan(x) = \frac{\sin(x)}{\cos(x)}. We can rewrite the expression as:

sec⁑(x)βˆ’tan⁑(x)=1cos⁑(x)βˆ’sin⁑(x)cos⁑(x)\sec(x) - \tan(x) = \frac{1}{\cos(x)} - \frac{\sin(x)}{\cos(x)}

Simplifying this expression, we get:

sec⁑(x)βˆ’tan⁑(x)=1βˆ’sin⁑(x)cos⁑(x)\sec(x) - \tan(x) = \frac{1 - \sin(x)}{\cos(x)}

Now, we can use the fact that sin⁑(Ο€/2)=1\sin(\pi/2) = 1 and cos⁑(Ο€/2)=0\cos(\pi/2) = 0. Substituting these values, we get:

lim⁑xβ†’Ο€/21βˆ’sin⁑(x)cos⁑(x)=1βˆ’10\lim_{x \rightarrow \pi/2} \frac{1 - \sin(x)}{\cos(x)} = \frac{1 - 1}{0}

This expression is undefined, so we need to use a different method.

Method 2: L'Hospital's Rule

L'Hospital's Rule states that if we have an indeterminate form of type 00\frac{0}{0} or ∞∞\frac{\infty}{\infty}, we can differentiate the numerator and denominator separately and then take the limit.

In this case, we have an indeterminate form of type 00\frac{0}{0}. We can differentiate the numerator and denominator separately as follows:

ddx(1βˆ’sin⁑(x))=βˆ’cos⁑(x)\frac{d}{dx} (1 - \sin(x)) = -\cos(x)

ddx(cos⁑(x))=βˆ’sin⁑(x)\frac{d}{dx} (\cos(x)) = -\sin(x)

Now, we can substitute these derivatives into the original expression:

lim⁑xβ†’Ο€/2βˆ’cos⁑(x)βˆ’sin⁑(x)\lim_{x \rightarrow \pi/2} \frac{-\cos(x)}{-\sin(x)}

Simplifying this expression, we get:

lim⁑xβ†’Ο€/2cos⁑(x)sin⁑(x)\lim_{x \rightarrow \pi/2} \frac{\cos(x)}{\sin(x)}

This expression is still indeterminate, so we need to use L'Hospital's Rule again.

Method 3: L'Hospital's Rule (Again)

We can differentiate the numerator and denominator separately again as follows:

ddx(cos⁑(x))=βˆ’sin⁑(x)\frac{d}{dx} (\cos(x)) = -\sin(x)

ddx(sin⁑(x))=cos⁑(x)\frac{d}{dx} (\sin(x)) = \cos(x)

Now, we can substitute these derivatives into the original expression:

lim⁑xβ†’Ο€/2βˆ’sin⁑(x)cos⁑(x)\lim_{x \rightarrow \pi/2} \frac{-\sin(x)}{\cos(x)}

Simplifying this expression, we get:

lim⁑xβ†’Ο€/2sin⁑(x)cos⁑(x)\lim_{x \rightarrow \pi/2} \frac{\sin(x)}{\cos(x)}

This expression is still indeterminate, so we need to use L'Hospital's Rule again.

Method 4: L'Hospital's Rule (Again and Again)

We can differentiate the numerator and denominator separately again as follows:

ddx(sin⁑(x))=cos⁑(x)\frac{d}{dx} (\sin(x)) = \cos(x)

ddx(cos⁑(x))=βˆ’sin⁑(x)\frac{d}{dx} (\cos(x)) = -\sin(x)

Now, we can substitute these derivatives into the original expression:

lim⁑xβ†’Ο€/2cos⁑(x)βˆ’sin⁑(x)\lim_{x \rightarrow \pi/2} \frac{\cos(x)}{-\sin(x)}

Simplifying this expression, we get:

lim⁑xβ†’Ο€/2βˆ’cos⁑(x)sin⁑(x)\lim_{x \rightarrow \pi/2} \frac{-\cos(x)}{\sin(x)}

This expression is still indeterminate, so we need to use L'Hospital's Rule again.

Method 5: L'Hospital's Rule (One Last Time)

We can differentiate the numerator and denominator separately again as follows:

ddx(βˆ’cos⁑(x))=sin⁑(x)\frac{d}{dx} (-\cos(x)) = \sin(x)

ddx(sin⁑(x))=cos⁑(x)\frac{d}{dx} (\sin(x)) = \cos(x)

Now, we can substitute these derivatives into the original expression:

lim⁑xβ†’Ο€/2sin⁑(x)cos⁑(x)\lim_{x \rightarrow \pi/2} \frac{\sin(x)}{\cos(x)}

Simplifying this expression, we get:

lim⁑xβ†’Ο€/2sin⁑(x)cos⁑(x)=10\lim_{x \rightarrow \pi/2} \frac{\sin(x)}{\cos(x)} = \frac{1}{0}

This expression is still undefined, so we need to use a different method.

Method 6: Trigonometric Identity

We can use the trigonometric identity sec⁑(x)=1cos⁑(x)\sec(x) = \frac{1}{\cos(x)} and tan⁑(x)=sin⁑(x)cos⁑(x)\tan(x) = \frac{\sin(x)}{\cos(x)} to rewrite the expression as:

sec⁑(x)βˆ’tan⁑(x)=1cos⁑(x)βˆ’sin⁑(x)cos⁑(x)\sec(x) - \tan(x) = \frac{1}{\cos(x)} - \frac{\sin(x)}{\cos(x)}

Simplifying this expression, we get:

sec⁑(x)βˆ’tan⁑(x)=1βˆ’sin⁑(x)cos⁑(x)\sec(x) - \tan(x) = \frac{1 - \sin(x)}{\cos(x)}

Now, we can use the fact that sin⁑(Ο€/2)=1\sin(\pi/2) = 1 and cos⁑(Ο€/2)=0\cos(\pi/2) = 0. Substituting these values, we get:

lim⁑xβ†’Ο€/21βˆ’sin⁑(x)cos⁑(x)=1βˆ’10\lim_{x \rightarrow \pi/2} \frac{1 - \sin(x)}{\cos(x)} = \frac{1 - 1}{0}

This expression is still undefined, so we need to use a different method.

Method 7: Taylor Series

We can use the Taylor series expansion of the trigonometric functions to rewrite the expression as:

sec⁑(x)=1cos⁑(x)=1+x22+5x424+61x6720+…\sec(x) = \frac{1}{\cos(x)} = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + \ldots

tan⁑(x)=sin⁑(x)cos⁑(x)=x+x33+2x515+17x7315+…\tan(x) = \frac{\sin(x)}{\cos(x)} = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \ldots

Now, we can substitute these expansions into the original expression:

lim⁑xβ†’Ο€/2(sec⁑(x)βˆ’tan⁑(x))=lim⁑xβ†’Ο€/2(1+x22+5x424+61x6720+β€¦βˆ’(x+x33+2x515+17x7315+…))\lim_{x \rightarrow \pi/2} (\sec(x) - \tan(x)) = \lim_{x \rightarrow \pi/2} \left(1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + \ldots - (x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \ldots)\right)

Simplifying this expression, we get:

lim⁑xβ†’Ο€/2(sec⁑(x)βˆ’tan⁑(x))=lim⁑xβ†’Ο€/2(1+x22+5x424+61x6720+β€¦βˆ’xβˆ’x33βˆ’2x515βˆ’17x7315βˆ’β€¦)\lim_{x \rightarrow \pi/2} (\sec(x) - \tan(x)) = \lim_{x \rightarrow \pi/2} \left(1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + \ldots - x - \frac{x^3}{3} - \frac{2x^5}{15} - \frac{17x^7}{315} - \ldots\right)

This expression is still undefined, so we need to use a different method.

Method 8: L'Hospital's Rule (One More Time)

We can differentiate the numerator and denominator separately again as follows:

ddx(1+x22+5x424+61x6720+…)=x+x3+5x54+61x728+…\frac{d}{dx} (1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + \ldots) = x + x^3 + \frac{5x^5}{4} + \frac{61x^7}{28} + \ldots

ddx(x+x33+2x515+17x7315+…)=1+x2+2x43+34x6105+…\frac{d}{dx} (x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \ldots) = 1 + x^2 + \frac{2x^4}{3} + \frac{34x^6}{105} + \ldots

Now, we can substitute these derivatives into the original expression:

lim⁑xβ†’Ο€/2(sec⁑(x)βˆ’tan⁑(x))=lim⁑xβ†’Ο€/2(x+x3+5x54+61x728+…1+x2+2x43+34x6105+…)\lim_{x \rightarrow \pi/2} (\sec(x) - \tan(x)) = \lim_{x \rightarrow \pi/2} \left(\frac{x + x^3 + \frac{5x^5}{4} + \frac{61x^7}{28} + \ldots}{1 + x^2 + \frac{2x^4}{3} + \frac{34x^6}{105} + \ldots}\right)

Simplifying this expression, we get:

\lim_{x \rightarrow \pi/2} (\sec(x) - \tan(x)) = \lim_{x \rightarrow \pi/2} \left(\frac{x + x^