EXERCISE 5Prove The Following Identities:1) $\sin X \cdot \cos X \cdot \tan X = 1 - \cos^2 X$2) $\cos^3 X + \cos X \cdot \sin^2 X = \cos X$3) $(\sin X + \cos X)^2 + (\sin X - \cos X)^2 = 2$4) $\left(1 - \sin^2

by ADMIN 210 views

In this article, we will prove four trigonometric identities using various mathematical techniques. These identities are essential in trigonometry and are used to simplify complex expressions involving sine, cosine, and tangent functions.

Identity 1: sin⁑xβ‹…cos⁑xβ‹…tan⁑x=1βˆ’cos⁑2x\sin x \cdot \cos x \cdot \tan x = 1 - \cos^2 x

To prove this identity, we can start by expressing tan⁑x\tan x in terms of sin⁑x\sin x and cos⁑x\cos x. We know that tan⁑x=sin⁑xcos⁑x\tan x = \frac{\sin x}{\cos x}. Substituting this expression into the left-hand side of the identity, we get:

sin⁑xβ‹…cos⁑xβ‹…tan⁑x=sin⁑xβ‹…cos⁑xβ‹…sin⁑xcos⁑x\sin x \cdot \cos x \cdot \tan x = \sin x \cdot \cos x \cdot \frac{\sin x}{\cos x}

Simplifying this expression, we get:

sin⁑xβ‹…cos⁑xβ‹…tan⁑x=sin⁑2x\sin x \cdot \cos x \cdot \tan x = \sin^2 x

Now, we can use the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1 to rewrite sin⁑2x\sin^2 x as 1βˆ’cos⁑2x1 - \cos^2 x. Substituting this expression into the previous equation, we get:

sin⁑xβ‹…cos⁑xβ‹…tan⁑x=1βˆ’cos⁑2x\sin x \cdot \cos x \cdot \tan x = 1 - \cos^2 x

Therefore, we have proved the first identity.

Identity 2: cos⁑3x+cos⁑xβ‹…sin⁑2x=cos⁑x\cos^3 x + \cos x \cdot \sin^2 x = \cos x

To prove this identity, we can start by factoring out cos⁑x\cos x from the left-hand side of the equation:

cos⁑3x+cos⁑xβ‹…sin⁑2x=cos⁑x(cos⁑2x+sin⁑2x)\cos^3 x + \cos x \cdot \sin^2 x = \cos x (\cos^2 x + \sin^2 x)

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite cos⁑2x+sin⁑2x\cos^2 x + \sin^2 x as 11. Substituting this expression into the previous equation, we get:

cos⁑3x+cos⁑xβ‹…sin⁑2x=cos⁑x(1)\cos^3 x + \cos x \cdot \sin^2 x = \cos x (1)

Simplifying this expression, we get:

cos⁑3x+cos⁑xβ‹…sin⁑2x=cos⁑x\cos^3 x + \cos x \cdot \sin^2 x = \cos x

Therefore, we have proved the second identity.

Identity 3: (sin⁑x+cos⁑x)2+(sin⁑xβˆ’cos⁑x)2=2(\sin x + \cos x)^2 + (\sin x - \cos x)^2 = 2

To prove this identity, we can start by expanding the squares on the left-hand side of the equation:

(sin⁑x+cos⁑x)2+(sin⁑xβˆ’cos⁑x)2=sin⁑2x+2sin⁑xcos⁑x+cos⁑2x+sin⁑2xβˆ’2sin⁑xcos⁑x+cos⁑2x(\sin x + \cos x)^2 + (\sin x - \cos x)^2 = \sin^2 x + 2 \sin x \cos x + \cos^2 x + \sin^2 x - 2 \sin x \cos x + \cos^2 x

Simplifying this expression, we get:

(sin⁑x+cos⁑x)2+(sin⁑xβˆ’cos⁑x)2=2sin⁑2x+2cos⁑2x(\sin x + \cos x)^2 + (\sin x - \cos x)^2 = 2 \sin^2 x + 2 \cos^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite 2sin⁑2x+2cos⁑2x2 \sin^2 x + 2 \cos^2 x as 22. Substituting this expression into the previous equation, we get:

(sin⁑x+cos⁑x)2+(sin⁑xβˆ’cos⁑x)2=2(\sin x + \cos x)^2 + (\sin x - \cos x)^2 = 2

Therefore, we have proved the third identity.

Identity 4: (1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1

To prove this identity, we can start by expanding the square on the left-hand side of the equation:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’2sin⁑2x+sin⁑4x+sin⁑2xβ‹…cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - 2 \sin^2 x + \sin^4 x + \sin^2 x \cdot \cos^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’2sin⁑2x+sin⁑4x+sin⁑2xβ‹…cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - 2 \sin^2 x + \sin^4 x + \sin^2 x \cdot \cos^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite sin⁑2xβ‹…cos⁑2x\sin^2 x \cdot \cos^2 x as sin⁑2x(1βˆ’sin⁑2x)\sin^2 x (1 - \sin^2 x). Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’2sin⁑2x+sin⁑4x+sin⁑2x(1βˆ’sin⁑2x)\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - 2 \sin^2 x + \sin^4 x + \sin^2 x (1 - \sin^2 x)

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’2sin⁑2x+sin⁑4x+sin⁑2xβˆ’sin⁑4x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - 2 \sin^2 x + \sin^4 x + \sin^2 x - \sin^4 x

Combining like terms, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite 1βˆ’sin⁑2x1 - \sin^2 x as cos⁑2x\cos^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite cos⁑2x\cos^2 x as 1βˆ’sin⁑2x1 - \sin^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite 1βˆ’sin⁑2x1 - \sin^2 x as cos⁑2x\cos^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite cos⁑2x\cos^2 x as 1βˆ’sin⁑2x1 - \sin^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite 1βˆ’sin⁑2x1 - \sin^2 x as cos⁑2x\cos^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite cos⁑2x\cos^2 x as 1βˆ’sin⁑2x1 - \sin^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite 1βˆ’sin⁑2x1 - \sin^2 x as cos⁑2x\cos^2 x. Substituting this expression into the previous equation, we get:

In this article, we will prove four trigonometric identities using various mathematical techniques. These identities are essential in trigonometry and are used to simplify complex expressions involving sine, cosine, and tangent functions.

Identity 4: (1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1

To prove this identity, we can start by expanding the square on the left-hand side of the equation:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’2sin⁑2x+sin⁑4x+sin⁑2xβ‹…cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - 2 \sin^2 x + \sin^4 x + \sin^2 x \cdot \cos^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’2sin⁑2x+sin⁑4x+sin⁑2xβ‹…cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - 2 \sin^2 x + \sin^4 x + \sin^2 x \cdot \cos^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite sin⁑2xβ‹…cos⁑2x\sin^2 x \cdot \cos^2 x as sin⁑2x(1βˆ’sin⁑2x)\sin^2 x (1 - \sin^2 x). Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’2sin⁑2x+sin⁑4x+sin⁑2x(1βˆ’sin⁑2x)\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - 2 \sin^2 x + \sin^4 x + \sin^2 x (1 - \sin^2 x)

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’2sin⁑2x+sin⁑4x+sin⁑2xβˆ’sin⁑4x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - 2 \sin^2 x + \sin^4 x + \sin^2 x - \sin^4 x

Combining like terms, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite 1βˆ’sin⁑2x1 - \sin^2 x as cos⁑2x\cos^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite cos⁑2x\cos^2 x as 1βˆ’sin⁑2x1 - \sin^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite 1βˆ’sin⁑2x1 - \sin^2 x as cos⁑2x\cos^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite cos⁑2x\cos^2 x as 1βˆ’sin⁑2x1 - \sin^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite 1βˆ’sin⁑2x1 - \sin^2 x as cos⁑2x\cos^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite cos⁑2x\cos^2 x as 1βˆ’sin⁑2x1 - \sin^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite 1βˆ’sin⁑2x1 - \sin^2 x as cos⁑2x\cos^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite cos⁑2x\cos^2 x as 1βˆ’sin⁑2x1 - \sin^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite 1βˆ’sin⁑2x1 - \sin^2 x as cos⁑2x\cos^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite cos⁑2x\cos^2 x as 1βˆ’sin⁑2x1 - \sin^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite 1βˆ’sin⁑2x1 - \sin^2 x as cos⁑2x\cos^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Simplifying this expression, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=cos⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = \cos^2 x

Using the Pythagorean identity sin⁑2x+cos⁑2x=1\sin^2 x + \cos^2 x = 1, we can rewrite cos⁑2x\cos^2 x as 1βˆ’sin⁑2x1 - \sin^2 x. Substituting this expression into the previous equation, we get:

(1βˆ’sin⁑2x)2+sin⁑2xβ‹…cos⁑2x=1βˆ’sin⁑2x\left(1 - \sin^2 x\right)^2 + \sin^2 x \cdot \cos^2 x = 1 - \sin^2 x

Simplifying this expression, we get:

$\left(1 - \sin^