Introduction
In this exercise, we will be proving a trigonometric identity and solving a trigonometric equation. The first part involves proving that cos β‘ 75 β + cos β‘ 15 β = 6 2 \cos 75^{\circ} + \cos 15^{\circ} = \frac{\sqrt{6}}{2} cos 7 5 β + cos 1 5 β = 2 6 β β without the use of a calculator. The second part involves determining the general solution of the trigonometric equation 1 + 4 sin β‘ 2 x β 5 sin β‘ x + cos β‘ 2 x = 0 1 + 4 \sin^2 x - 5 \sin x + \cos 2x = 0 1 + 4 sin 2 x β 5 sin x + cos 2 x = 0 .
Exercise 33.1: Proving the Trigonometric Identity
To prove the trigonometric identity cos β‘ 75 β + cos β‘ 15 β = 6 2 \cos 75^{\circ} + \cos 15^{\circ} = \frac{\sqrt{6}}{2} cos 7 5 β + cos 1 5 β = 2 6 β β , we can use the sum-to-product identity for cosine:
cos β‘ A + cos β‘ B = 2 cos β‘ ( A + B 2 ) cos β‘ ( A β B 2 ) \cos A + \cos B = 2 \cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)
cos A + cos B = 2 cos ( 2 A + B β ) cos ( 2 A β B β )
In this case, A = 75 β A = 75^{\circ} A = 7 5 β and B = 15 β B = 15^{\circ} B = 1 5 β .
import math
angle_A = math.radians(75)
angle_B = math.radians(15)
sum_angles = (angle_A + angle_B) / 2
diff_angles = (angle_A - angle_B) / 2
cos_sum_angles = math.cos(sum_angles)
cos_diff_angles = math.cos(diff_angles)
product_cosines = 2 * cos_sum_angles * cos_diff_angles
print("The product of the cosines is:", product_cosines)
Using this identity, we can rewrite the expression as:
cos β‘ 75 β + cos β‘ 15 β = 2 cos β‘ ( 75 β + 15 β 2 ) cos β‘ ( 75 β β 15 β 2 ) \cos 75^{\circ} + \cos 15^{\circ} = 2 \cos \left( \frac{75^{\circ} + 15^{\circ}}{2} \right) \cos \left( \frac{75^{\circ} - 15^{\circ}}{2} \right)
cos 7 5 β + cos 1 5 β = 2 cos ( 2 7 5 β + 1 5 β β ) cos ( 2 7 5 β β 1 5 β β )
Simplifying the expression, we get:
cos β‘ 75 β + cos β‘ 15 β = 2 cos β‘ 45 β cos β‘ 30 β \cos 75^{\circ} + \cos 15^{\circ} = 2 \cos 45^{\circ} \cos 30^{\circ}
cos 7 5 β + cos 1 5 β = 2 cos 4 5 β cos 3 0 β
Using the values of cos β‘ 45 β = 2 2 \cos 45^{\circ} = \frac{\sqrt{2}}{2} cos 4 5 β = 2 2 β β and cos β‘ 30 β = 3 2 \cos 30^{\circ} = \frac{\sqrt{3}}{2} cos 3 0 β = 2 3 β β , we can substitute these values into the expression:
cos β‘ 75 β + cos β‘ 15 β = 2 ( 2 2 ) ( 3 2 ) \cos 75^{\circ} + \cos 15^{\circ} = 2 \left( \frac{\sqrt{2}}{2} \right) \left( \frac{\sqrt{3}}{2} \right)
cos 7 5 β + cos 1 5 β = 2 ( 2 2 β β ) ( 2 3 β β )
Simplifying the expression, we get:
cos β‘ 75 β + cos β‘ 15 β = 6 2 \cos 75^{\circ} + \cos 15^{\circ} = \frac{\sqrt{6}}{2}
cos 7 5 β + cos 1 5 β = 2 6 β β
Therefore, we have proved the trigonometric identity cos β‘ 75 β + cos β‘ 15 β = 6 2 \cos 75^{\circ} + \cos 15^{\circ} = \frac{\sqrt{6}}{2} cos 7 5 β + cos 1 5 β = 2 6 β β .
Exercise 33.2: Solving the Trigonometric Equation
To solve the trigonometric equation 1 + 4 sin β‘ 2 x β 5 sin β‘ x + cos β‘ 2 x = 0 1 + 4 \sin^2 x - 5 \sin x + \cos 2x = 0 1 + 4 sin 2 x β 5 sin x + cos 2 x = 0 , we can start by using the double-angle identity for cosine:
cos β‘ 2 x = 1 β 2 sin β‘ 2 x \cos 2x = 1 - 2 \sin^2 x
cos 2 x = 1 β 2 sin 2 x
Substituting this expression into the equation, we get:
1 + 4 sin β‘ 2 x β 5 sin β‘ x + 1 β 2 sin β‘ 2 x = 0 1 + 4 \sin^2 x - 5 \sin x + 1 - 2 \sin^2 x = 0
1 + 4 sin 2 x β 5 sin x + 1 β 2 sin 2 x = 0
Simplifying the equation, we get:
2 + 2 sin β‘ 2 x β 5 sin β‘ x = 0 2 + 2 \sin^2 x - 5 \sin x = 0
2 + 2 sin 2 x β 5 sin x = 0
Factoring out the common term 2 2 2 , we get:
2 ( 1 + sin β‘ 2 x β 5 2 sin β‘ x ) = 0 2 (1 + \sin^2 x - \frac{5}{2} \sin x) = 0
2 ( 1 + sin 2 x β 2 5 β sin x ) = 0
Dividing both sides of the equation by 2 2 2 , we get:
1 + sin β‘ 2 x β 5 2 sin β‘ x = 0 1 + \sin^2 x - \frac{5}{2} \sin x = 0
1 + sin 2 x β 2 5 β sin x = 0
Rearranging the equation, we get:
sin β‘ 2 x β 5 2 sin β‘ x + 1 = 0 \sin^2 x - \frac{5}{2} \sin x + 1 = 0
sin 2 x β 2 5 β sin x + 1 = 0
This is a quadratic equation in terms of sin β‘ x \sin x sin x . We can solve this equation using the quadratic formula:
sin β‘ x = β b Β± b 2 β 4 a c 2 a \sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
sin x = 2 a β b Β± b 2 β 4 a c β β
In this case, a = 1 a = 1 a = 1 , b = β 5 2 b = -\frac{5}{2} b = β 2 5 β , and c = 1 c = 1 c = 1 .
import math
a = 1
b = -5/2
c = 1
discriminant = b**2 - 4a c
solution1 = (-b + math.sqrt(discriminant)) / (2a)
solution2 = (-b - math.sqrt(discriminant)) / (2 a)
print("The two solutions are:", solution1, "and", solution2)
Solving the equation, we get:
sin β‘ x = 5 2 Β± ( 5 2 ) 2 β 4 2 \sin x = \frac{\frac{5}{2} \pm \sqrt{\left( \frac{5}{2} \right)^2 - 4}}{2}
sin x = 2 2 5 β Β± ( 2 5 β ) 2 β 4 β β
Simplifying the expression, we get:
sin β‘ x = 5 2 Β± 9 2 2 \sin x = \frac{\frac{5}{2} \pm \frac{\sqrt{9}}{2}}{2}
sin x = 2 2 5 β Β± 2 9 β β β
Simplifying further, we get:
sin β‘ x = 5 2 Β± 3 2 2 \sin x = \frac{\frac{5}{2} \pm \frac{3}{2}}{2}
sin x = 2 2 5 β Β± 2 3 β β
Therefore, we have two possible solutions:
sin β‘ x = 5 2 + 3 2 2 = 2 \sin x = \frac{\frac{5}{2} + \frac{3}{2}}{2} = 2
sin x = 2 2 5 β + 2 3 β β = 2
sin β‘ x = 5 2 β 3 2 2 = 1 \sin x = \frac{\frac{5}{2} - \frac{3}{2}}{2} = 1
sin x = 2 2 5 β β 2 3 β β = 1
However, since the sine function is bounded between β 1 -1 β 1 and 1 1 1 , the solution sin β‘ x = 2 \sin x = 2 sin x = 2 is extraneous and can be discarded.
Therefore, the only valid solution is:
sin β‘ x = 1 \sin x = 1
sin x = 1
This implies that:
x = sin β‘ β 1 ( 1 ) x = \sin^{-1} (1)
x = sin β 1 ( 1 )
Using the inverse sine function, we get:
x = Ο 2 x = \frac{\pi}{2}
x = 2 Ο β
Therefore, the general solution of the trigonometric equation 1 + 4 sin β‘ 2 x β 5 sin β‘ x + cos β‘ 2 x = 0 1 + 4 \sin^2 x - 5 \sin x + \cos 2x = 0 1 + 4 sin 2 x β 5 sin x + cos 2 x = 0 is:
x = Ο 2 + 2 Ο n x = \frac{\pi}{2} + 2 \pi n
x = 2 Ο β + 2 Οn
where n n n is an integer.
Conclusion
Q: What is the main goal of Exercise 33.1?
A: The main goal of Exercise 33.1 is to prove the trigonometric identity cos β‘ 75 β + cos β‘ 15 β = 6 2 \cos 75^{\circ} + \cos 15^{\circ} = \frac{\sqrt{6}}{2} cos 7 5 β + cos 1 5 β = 2 6 β β without the use of a calculator.
Q: What is the sum-to-product identity for cosine?
A: The sum-to-product identity for cosine is:
cos β‘ A + cos β‘ B = 2 cos β‘ ( A + B 2 ) cos β‘ ( A β B 2 ) \cos A + \cos B = 2 \cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)
cos A + cos B = 2 cos ( 2 A + B β ) cos ( 2 A β B β )
Q: How do you simplify the expression cos β‘ 75 β + cos β‘ 15 β \cos 75^{\circ} + \cos 15^{\circ} cos 7 5 β + cos 1 5 β using the sum-to-product identity?
A: To simplify the expression, we can use the sum-to-product identity for cosine:
cos β‘ 75 β + cos β‘ 15 β = 2 cos β‘ ( 75 β + 15 β 2 ) cos β‘ ( 75 β β 15 β 2 ) \cos 75^{\circ} + \cos 15^{\circ} = 2 \cos \left( \frac{75^{\circ} + 15^{\circ}}{2} \right) \cos \left( \frac{75^{\circ} - 15^{\circ}}{2} \right)
cos 7 5 β + cos 1 5 β = 2 cos ( 2 7 5 β + 1 5 β β ) cos ( 2 7 5 β β 1 5 β β )
Simplifying the expression, we get:
cos β‘ 75 β + cos β‘ 15 β = 2 cos β‘ 45 β cos β‘ 30 β \cos 75^{\circ} + \cos 15^{\circ} = 2 \cos 45^{\circ} \cos 30^{\circ}
cos 7 5 β + cos 1 5 β = 2 cos 4 5 β cos 3 0 β
Q: What is the value of cos β‘ 45 β \cos 45^{\circ} cos 4 5 β and cos β‘ 30 β \cos 30^{\circ} cos 3 0 β ?
A: The value of cos β‘ 45 β \cos 45^{\circ} cos 4 5 β is 2 2 \frac{\sqrt{2}}{2} 2 2 β β and the value of cos β‘ 30 β \cos 30^{\circ} cos 3 0 β is 3 2 \frac{\sqrt{3}}{2} 2 3 β β .
Q: How do you simplify the expression 2 cos β‘ 45 β cos β‘ 30 β 2 \cos 45^{\circ} \cos 30^{\circ} 2 cos 4 5 β cos 3 0 β ?
A: To simplify the expression, we can substitute the values of cos β‘ 45 β \cos 45^{\circ} cos 4 5 β and cos β‘ 30 β \cos 30^{\circ} cos 3 0 β :
2 cos β‘ 45 β cos β‘ 30 β = 2 ( 2 2 ) ( 3 2 ) 2 \cos 45^{\circ} \cos 30^{\circ} = 2 \left( \frac{\sqrt{2}}{2} \right) \left( \frac{\sqrt{3}}{2} \right)
2 cos 4 5 β cos 3 0 β = 2 ( 2 2 β β ) ( 2 3 β β )
Simplifying the expression, we get:
2 cos β‘ 45 β cos β‘ 30 β = 6 2 2 \cos 45^{\circ} \cos 30^{\circ} = \frac{\sqrt{6}}{2}
2 cos 4 5 β cos 3 0 β = 2 6 β β
Q: What is the main goal of Exercise 33.2?
A: The main goal of Exercise 33.2 is to solve the trigonometric equation 1 + 4 sin β‘ 2 x β 5 sin β‘ x + cos β‘ 2 x = 0 1 + 4 \sin^2 x - 5 \sin x + \cos 2x = 0 1 + 4 sin 2 x β 5 sin x + cos 2 x = 0 .
Q: How do you simplify the equation 1 + 4 sin β‘ 2 x β 5 sin β‘ x + cos β‘ 2 x = 0 1 + 4 \sin^2 x - 5 \sin x + \cos 2x = 0 1 + 4 sin 2 x β 5 sin x + cos 2 x = 0 ?
A: To simplify the equation, we can use the double-angle identity for cosine:
cos β‘ 2 x = 1 β 2 sin β‘ 2 x \cos 2x = 1 - 2 \sin^2 x
cos 2 x = 1 β 2 sin 2 x
Substituting this expression into the equation, we get:
1 + 4 sin β‘ 2 x β 5 sin β‘ x + 1 β 2 sin β‘ 2 x = 0 1 + 4 \sin^2 x - 5 \sin x + 1 - 2 \sin^2 x = 0
1 + 4 sin 2 x β 5 sin x + 1 β 2 sin 2 x = 0
Simplifying the equation, we get:
2 + 2 sin β‘ 2 x β 5 sin β‘ x = 0 2 + 2 \sin^2 x - 5 \sin x = 0
2 + 2 sin 2 x β 5 sin x = 0
Q: How do you solve the quadratic equation 2 + 2 sin β‘ 2 x β 5 sin β‘ x = 0 2 + 2 \sin^2 x - 5 \sin x = 0 2 + 2 sin 2 x β 5 sin x = 0 ?
A: To solve the quadratic equation, we can use the quadratic formula:
sin β‘ x = β b Β± b 2 β 4 a c 2 a \sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
sin x = 2 a β b Β± b 2 β 4 a c β β
In this case, a = 1 a = 1 a = 1 , b = β 5 2 b = -\frac{5}{2} b = β 2 5 β , and c = 1 c = 1 c = 1 .
Q: What is the general solution of the trigonometric equation 1 + 4 sin β‘ 2 x β 5 sin β‘ x + cos β‘ 2 x = 0 1 + 4 \sin^2 x - 5 \sin x + \cos 2x = 0 1 + 4 sin 2 x β 5 sin x + cos 2 x = 0 ?
A: The general solution of the trigonometric equation is x = Ο 2 + 2 Ο n x = \frac{\pi}{2} + 2 \pi n x = 2 Ο β + 2 Οn , where n n n is an integer.
Q: What is the final answer to Exercise 33.1 and 33.2?
A: The final answer to Exercise 33.1 is cos β‘ 75 β + cos β‘ 15 β = 6 2 \cos 75^{\circ} + \cos 15^{\circ} = \frac{\sqrt{6}}{2} cos 7 5 β + cos 1 5 β = 2 6 β β and the final answer to Exercise 33.2 is x = Ο 2 + 2 Ο n x = \frac{\pi}{2} + 2 \pi n x = 2 Ο β + 2 Οn , where n n n is an integer.