
===========================================================
Introduction
Differential equations are a fundamental concept in mathematics, and solving them is a crucial skill for students and professionals alike. In this article, we will focus on solving a specific differential equation, which is given by:
dxdyβ=2yβ13x2β2β
This equation is a first-order differential equation, and it can be solved using various techniques. In this article, we will use the method of separation of variables to solve this equation.
Understanding the Equation
Before we dive into the solution, let's understand the equation. The equation is a first-order differential equation, which means that it involves a derivative of a function with respect to a single variable. In this case, the derivative is with respect to x, and the function is y.
The equation is given by:
dxdyβ=2yβ13x2β2β
This equation can be rewritten as:
dxdyβ=2yβ13x2β2β
dxdyβ(2yβ1)=3x2β2
2ydxdyββdxdyβ=3x2β2
Separation of Variables
To solve this equation, we will use the method of separation of variables. This method involves separating the variables x and y, and then integrating both sides of the equation.
Let's start by separating the variables. We can do this by multiplying both sides of the equation by (2y - 1), which is the denominator of the right-hand side.
2ydxdyββdxdyβ=3x2β2
dxdyβ(2yβ1)=3x2β2
Now, we can separate the variables by dividing both sides of the equation by (2y - 1).
2yβ1dyβ=2yβ13x2β2βdx
Integrating Both Sides
Now that we have separated the variables, we can integrate both sides of the equation.
β«2yβ1dyβ=β«2yβ13x2β2βdx
To integrate the left-hand side, we can use the substitution method. Let's substitute u = 2y - 1.
β«2yβ1dyβ=β«uduβ
β«2yβ1dyβ=lnβ£uβ£+C1β
β«2yβ1dyβ=lnβ£2yβ1β£+C1β
To integrate the right-hand side, we can use the substitution method. Let's substitute u = 2y - 1.
β«2yβ13x2β2βdx=β«u3x2β2βdx
β«2yβ13x2β2βdx=β«u3x2β2βdx
β«2yβ13x2β2βdx=21ββ«u3u2β4βdx
β«2yβ13x2β2βdx=21ββ«u3u2β4βdx
Evaluating the Integrals
Now that we have integrated both sides of the equation, we can evaluate the integrals.
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
To evaluate the integral on the right-hand side, we can use the substitution method. Let's substitute u = 2y - 1.
21ββ«u3u2β4βdx=21ββ«u3u2β4βdx
21ββ«u3u2β4βdx=21ββ«u3u2β4βdx
21ββ«u3u2β4βdx=21ββ«u3u2β4βdx
Simplifying the Equation
Now that we have evaluated the integrals, we can simplify the equation.
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
Solving for y
Now that we have simplified the equation, we can solve for y.
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
lnβ£2yβ1β£+C1β=21ββ«u3u2β4βdx
\ln |2 y - 1<br/>
# **Frequently Asked Questions: Solving the Differential Equation**
===========================================================
Q: What is a differential equation?

A: A differential equation is a mathematical equation that involves an unknown function and its derivatives. It is a fundamental concept in mathematics and is used to model a wide range of phenomena in physics, engineering, economics, and other fields.
Q: What is the method of separation of variables?
A: The method of separation of variables is a technique used to solve differential equations by separating the variables and integrating both sides of the equation. It is a powerful method that can be used to solve a wide range of differential equations.
Q: How do I know if a differential equation can be solved using the method of separation of variables?
A: To determine if a differential equation can be solved using the method of separation of variables, you need to check if the equation can be written in the form:
dxdyβ=f(x)g(y)</span></p><p>Iftheequationcanbewritteninthisform,thenitcanbesolvedusingthemethodofseparationofvariables.</p><h2><strong>Q:Whatisthesubstitutionmethod?</strong></h2><hr><p>A:Thesubstitutionmethodisatechniqueusedtosolvedifferentialequationsbysubstitutinganewvariableforoneofthevariablesintheequation.Itisapowerfulmethodthatcanbeusedtosolveawiderangeofdifferentialequations.</p><h2><strong>Q:HowdoIusethesubstitutionmethodtosolveadifferentialequation?</strong></h2><hr><p>A:Tousethesubstitutionmethodtosolveadifferentialequation,youneedtosubstituteanewvariableforoneofthevariablesintheequation.Youthenneedtointegratebothsidesoftheequationandsolveforthenewvariable.Finally,youneedtosubstitutebacktheoriginalvariableandsolvefortheoriginalvariable.</p><h2><strong>Q:Whatisthegeneralsolutionofadifferentialequation?</strong></h2><hr><p>A:Thegeneralsolutionofadifferentialequationisasolutionthatcontainsoneormorearbitraryconstants.Itisasolutionthatsatisfiesthedifferentialequationforallvaluesoftheindependentvariable.</p><h2><strong>Q:Whatistheparticularsolutionofadifferentialequation?</strong></h2><hr><p>A:Theparticularsolutionofadifferentialequationisasolutionthatsatisfiesthedifferentialequationforaspecificvalueoftheindependentvariable.Itisasolutionthatisobtainedbysubstitutingaspecificvaluefortheindependentvariableintothegeneralsolution.</p><h2><strong>Q:HowdoIfindtheparticularsolutionofadifferentialequation?</strong></h2><hr><p>A:Tofindtheparticularsolutionofadifferentialequation,youneedtosubstituteaspecificvaluefortheindependentvariableintothegeneralsolution.Youthenneedtosolveforthearbitraryconstantsandsubstitutebacktheoriginalvaluefortheindependentvariable.</p><h2><strong>Q:Whatistheinitialconditionofadifferentialequation?</strong></h2><hr><p>A:Theinitialconditionofadifferentialequationisaconditionthatisspecifiedataspecificvalueoftheindependentvariable.Itisaconditionthatisusedtodeterminetheparticularsolutionofthedifferentialequation.</p><h2><strong>Q:HowdoIusetheinitialconditiontofindtheparticularsolutionofadifferentialequation?</strong></h2><hr><p>A:Tousetheinitialconditiontofindtheparticularsolutionofadifferentialequation,youneedtosubstitutetheinitialconditionintothegeneralsolution.Youthenneedtosolveforthearbitraryconstantsandsubstitutebacktheoriginalvaluefortheindependentvariable.</p><h2><strong>Q:Whatisthefinalanswerofadifferentialequation?</strong></h2><hr><p>A:Thefinalanswerofadifferentialequationisthesolutionthatsatisfiesthedifferentialequationforallvaluesoftheindependentvariable.Itisasolutionthatcontainsnoarbitraryconstants.</p><h2><strong>Q:HowdoIfindthefinalanswerofadifferentialequation?</strong></h2><hr><p>A:Tofindthefinalanswerofadifferentialequation,youneedtosubstitutetheinitialconditionintothegeneralsolution.Youthenneedtosolveforthearbitraryconstantsandsubstitutebacktheoriginalvaluefortheindependentvariable.Finally,youneedtosimplifythesolutionandobtainthefinalanswer.</p><h2><strong>Q:Whataresomecommonmistakestoavoidwhensolvingdifferentialequations?</strong></h2><hr><p>A:Somecommonmistakestoavoidwhensolvingdifferentialequationsinclude:</p><ul><li>Notcheckingiftheequationcanbewrittenintheformofaseparabledifferentialequation</li><li>Notusingthecorrectmethodtosolvethedifferentialequation</li><li>Notcheckingifthesolutionsatisfiestheinitialcondition</li><li>Notsimplifyingthesolutiontoobtainthefinalanswer</li></ul><h2><strong>Q:Whataresometipsforsolvingdifferentialequations?</strong></h2><hr><p>A:Sometipsforsolvingdifferentialequationsinclude:</p><ul><li>Alwayscheckiftheequationcanbewrittenintheformofaseparabledifferentialequation</li><li>Usethecorrectmethodtosolvethedifferentialequation</li><li>Alwayscheckifthesolutionsatisfiestheinitialcondition</li><li>Alwayssimplifythesolutiontoobtainthefinalanswer</li><li>Practice,practice,practice!Themoreyoupracticesolvingdifferentialequations,themorecomfortableyouwillbecomewiththemethodsandtechniques.</li></ul>