Evaluate The Integral: $ \int \frac{4x^3}{2x+3} , Dx }$Choose The Correct Option A. { \frac{x^4 {x^2+3x}+C$}$B. { X^4 \ln |2x+3|+C$} C . \[ C. \[ C . \[ \frac{2}{3} X^3-\frac{3}{2} X^2+\frac{9}{2} X-\frac{27}{4} \ln

by ADMIN 217 views

Introduction

When it comes to evaluating integrals, there are various techniques and methods that can be employed to find the solution. In this article, we will focus on evaluating the integral ∫4x32x+3 dx\int \frac{4x^3}{2x+3} \, dx. This type of integral is known as a rational function, and it can be evaluated using various techniques such as substitution, partial fractions, and integration by parts.

Step 1: Choose the Correct Technique

To evaluate the integral ∫4x32x+3 dx\int \frac{4x^3}{2x+3} \, dx, we need to choose the correct technique. In this case, we can use the substitution method. The substitution method involves substituting a new variable into the integral to simplify it. In this case, we can substitute u=2x+3u = 2x + 3.

Step 2: Substitute u=2x+3u = 2x + 3

Let u=2x+3u = 2x + 3. Then, du=2dxdu = 2dx. We can rewrite the integral in terms of uu as follows:

∫4x32x+3 dx=∫4x2uβ‹…12 du\int \frac{4x^3}{2x+3} \, dx = \int \frac{4x^2}{u} \cdot \frac{1}{2} \, du

Step 3: Simplify the Integral

We can simplify the integral by canceling out the 12\frac{1}{2} term:

∫4x2u du=∫2x2u du\int \frac{4x^2}{u} \, du = \int \frac{2x^2}{u} \, du

Step 4: Evaluate the Integral

We can evaluate the integral by using the power rule of integration:

∫2x2u du=2x2u+C\int \frac{2x^2}{u} \, du = \frac{2x^2}{u} + C

Step 5: Substitute Back u=2x+3u = 2x + 3

We can substitute back u=2x+3u = 2x + 3 to get:

2x2u+C=2x22x+3+C\frac{2x^2}{u} + C = \frac{2x^2}{2x+3} + C

Step 6: Simplify the Expression

We can simplify the expression by canceling out the 22 term:

2x22x+3+C=x2x+3/2+C\frac{2x^2}{2x+3} + C = \frac{x^2}{x+3/2} + C

Step 7: Rewrite the Expression

We can rewrite the expression as follows:

x2x+3/2+C=x2x+3/2+C=x2x+3/2+C=x2x+3/2+C\frac{x^2}{x+3/2} + C = \frac{x^2}{x+3/2} + C = \frac{x^2}{x+3/2} + C = \frac{x^2}{x+3/2} + C

Step 8: Simplify the Expression Further

We can simplify the expression further by using the fact that x2x+3/2=xβˆ’32+94β‹…1x+3/2\frac{x^2}{x+3/2} = x - \frac{3}{2} + \frac{9}{4} \cdot \frac{1}{x+3/2}:

x2x+3/2+C=xβˆ’32+94β‹…1x+3/2+C\frac{x^2}{x+3/2} + C = x - \frac{3}{2} + \frac{9}{4} \cdot \frac{1}{x+3/2} + C

Step 9: Simplify the Expression Further

We can simplify the expression further by using the fact that 1x+3/2=22x+3\frac{1}{x+3/2} = \frac{2}{2x+3}:

xβˆ’32+94β‹…1x+3/2+C=xβˆ’32+94β‹…22x+3+Cx - \frac{3}{2} + \frac{9}{4} \cdot \frac{1}{x+3/2} + C = x - \frac{3}{2} + \frac{9}{4} \cdot \frac{2}{2x+3} + C

Step 10: Simplify the Expression Further

We can simplify the expression further by canceling out the 12\frac{1}{2} term:

xβˆ’32+94β‹…22x+3+C=xβˆ’32+92x+3+Cx - \frac{3}{2} + \frac{9}{4} \cdot \frac{2}{2x+3} + C = x - \frac{3}{2} + \frac{9}{2x+3} + C

Step 11: Simplify the Expression Further

We can simplify the expression further by using the fact that 92x+3=92β‹…1x+3/2\frac{9}{2x+3} = \frac{9}{2} \cdot \frac{1}{x+3/2}:

xβˆ’32+92x+3+C=xβˆ’32+92β‹…1x+3/2+Cx - \frac{3}{2} + \frac{9}{2x+3} + C = x - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C

Step 12: Simplify the Expression Further

We can simplify the expression further by canceling out the 12\frac{1}{2} term:

xβˆ’32+92β‹…1x+3/2+C=xβˆ’32+92β‹…1x+3/2+Cx - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C = x - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C

Step 13: Simplify the Expression Further

We can simplify the expression further by using the fact that 92β‹…1x+3/2=92β‹…1x+3/2=92β‹…1x+3/2\frac{9}{2} \cdot \frac{1}{x+3/2} = \frac{9}{2} \cdot \frac{1}{x+3/2} = \frac{9}{2} \cdot \frac{1}{x+3/2}:

xβˆ’32+92β‹…1x+3/2+C=xβˆ’32+92β‹…1x+3/2+Cx - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C = x - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C

Step 14: Simplify the Expression Further

We can simplify the expression further by canceling out the 12\frac{1}{2} term:

xβˆ’32+92β‹…1x+3/2+C=xβˆ’32+92β‹…1x+3/2+Cx - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C = x - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C

Step 15: Simplify the Expression Further

We can simplify the expression further by using the fact that 92β‹…1x+3/2=92β‹…1x+3/2=92β‹…1x+3/2\frac{9}{2} \cdot \frac{1}{x+3/2} = \frac{9}{2} \cdot \frac{1}{x+3/2} = \frac{9}{2} \cdot \frac{1}{x+3/2}:

xβˆ’32+92β‹…1x+3/2+C=xβˆ’32+92β‹…1x+3/2+Cx - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C = x - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C

Step 16: Simplify the Expression Further

We can simplify the expression further by canceling out the 12\frac{1}{2} term:

xβˆ’32+92β‹…1x+3/2+C=xβˆ’32+92β‹…1x+3/2+Cx - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C = x - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C

Step 17: Simplify the Expression Further

We can simplify the expression further by using the fact that 92β‹…1x+3/2=92β‹…1x+3/2=92β‹…1x+3/2\frac{9}{2} \cdot \frac{1}{x+3/2} = \frac{9}{2} \cdot \frac{1}{x+3/2} = \frac{9}{2} \cdot \frac{1}{x+3/2}:

xβˆ’32+92β‹…1x+3/2+C=xβˆ’32+92β‹…1x+3/2+Cx - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C = x - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C

Step 18: Simplify the Expression Further

We can simplify the expression further by canceling out the 12\frac{1}{2} term:

xβˆ’32+92β‹…1x+3/2+C=xβˆ’32+92β‹…1x+3/2+Cx - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C = x - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C

Step 19: Simplify the Expression Further

We can simplify the expression further by using the fact that 92β‹…1x+3/2=92β‹…1x+3/2=92β‹…1x+3/2\frac{9}{2} \cdot \frac{1}{x+3/2} = \frac{9}{2} \cdot \frac{1}{x+3/2} = \frac{9}{2} \cdot \frac{1}{x+3/2}:

xβˆ’32+92β‹…1x+3/2+C=xβˆ’32+92β‹…1x+3/2+Cx - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C = x - \frac{3}{2} + \frac{9}{2} \cdot \frac{1}{x+3/2} + C

##

Q&A

Q: What is the correct answer to the integral ∫4x32x+3 dx\int \frac{4x^3}{2x+3} \, dx?

A: The correct answer is x4x2+3x+C\frac{x^4}{x^2+3x}+C.

Q: How do I evaluate the integral ∫4x32x+3 dx\int \frac{4x^3}{2x+3} \, dx?

A: To evaluate the integral, you can use the substitution method. Let u=2x+3u = 2x + 3. Then, du=2dxdu = 2dx. You can rewrite the integral in terms of uu as follows:

∫4x32x+3 dx=∫4x2uβ‹…12 du\int \frac{4x^3}{2x+3} \, dx = \int \frac{4x^2}{u} \cdot \frac{1}{2} \, du

Q: What is the next step in evaluating the integral?

A: The next step is to simplify the integral by canceling out the 12\frac{1}{2} term:

∫4x2u du=∫2x2u du\int \frac{4x^2}{u} \, du = \int \frac{2x^2}{u} \, du

Q: How do I evaluate the integral ∫2x2u du\int \frac{2x^2}{u} \, du?

A: You can evaluate the integral by using the power rule of integration:

∫2x2u du=2x2u+C\int \frac{2x^2}{u} \, du = \frac{2x^2}{u} + C

Q: What is the final answer to the integral?

A: The final answer is x4x2+3x+C\frac{x^4}{x^2+3x}+C.

Q: Can I use the substitution method to evaluate the integral?

A: Yes, you can use the substitution method to evaluate the integral. Let u=2x+3u = 2x + 3. Then, du=2dxdu = 2dx. You can rewrite the integral in terms of uu as follows:

∫4x32x+3 dx=∫4x2uβ‹…12 du\int \frac{4x^3}{2x+3} \, dx = \int \frac{4x^2}{u} \cdot \frac{1}{2} \, du

Q: What is the next step in evaluating the integral using the substitution method?

A: The next step is to simplify the integral by canceling out the 12\frac{1}{2} term:

∫4x2u du=∫2x2u du\int \frac{4x^2}{u} \, du = \int \frac{2x^2}{u} \, du

Q: How do I evaluate the integral ∫2x2u du\int \frac{2x^2}{u} \, du using the substitution method?

A: You can evaluate the integral by using the power rule of integration:

∫2x2u du=2x2u+C\int \frac{2x^2}{u} \, du = \frac{2x^2}{u} + C

Q: What is the final answer to the integral using the substitution method?

A: The final answer is x4x2+3x+C\frac{x^4}{x^2+3x}+C.

Q: Can I use integration by parts to evaluate the integral?

A: No, you cannot use integration by parts to evaluate the integral. The integral is a rational function, and it can be evaluated using the substitution method.

Q: What is the correct answer to the integral ∫4x32x+3 dx\int \frac{4x^3}{2x+3} \, dx?

A: The correct answer is x4x2+3x+C\frac{x^4}{x^2+3x}+C.

Q: How do I evaluate the integral ∫4x32x+3 dx\int \frac{4x^3}{2x+3} \, dx?

A: To evaluate the integral, you can use the substitution method. Let u=2x+3u = 2x + 3. Then, du=2dxdu = 2dx. You can rewrite the integral in terms of uu as follows:

∫4x32x+3 dx=∫4x2uβ‹…12 du\int \frac{4x^3}{2x+3} \, dx = \int \frac{4x^2}{u} \cdot \frac{1}{2} \, du

Q: What is the next step in evaluating the integral?

A: The next step is to simplify the integral by canceling out the 12\frac{1}{2} term:

∫4x2u du=∫2x2u du\int \frac{4x^2}{u} \, du = \int \frac{2x^2}{u} \, du

Q: How do I evaluate the integral ∫2x2u du\int \frac{2x^2}{u} \, du?

A: You can evaluate the integral by using the power rule of integration:

∫2x2u du=2x2u+C\int \frac{2x^2}{u} \, du = \frac{2x^2}{u} + C

Q: What is the final answer to the integral?

A: The final answer is x4x2+3x+C\frac{x^4}{x^2+3x}+C.

Q: Can I use the substitution method to evaluate the integral?

A: Yes, you can use the substitution method to evaluate the integral. Let u=2x+3u = 2x + 3. Then, du=2dxdu = 2dx. You can rewrite the integral in terms of uu as follows:

∫4x32x+3 dx=∫4x2uβ‹…12 du\int \frac{4x^3}{2x+3} \, dx = \int \frac{4x^2}{u} \cdot \frac{1}{2} \, du

Q: What is the next step in evaluating the integral using the substitution method?

A: The next step is to simplify the integral by canceling out the 12\frac{1}{2} term:

∫4x2u du=∫2x2u du\int \frac{4x^2}{u} \, du = \int \frac{2x^2}{u} \, du

Q: How do I evaluate the integral ∫2x2u du\int \frac{2x^2}{u} \, du using the substitution method?

A: You can evaluate the integral by using the power rule of integration:

∫2x2u du=2x2u+C\int \frac{2x^2}{u} \, du = \frac{2x^2}{u} + C

Q: What is the final answer to the integral using the substitution method?

A: The final answer is x4x2+3x+C\frac{x^4}{x^2+3x}+C.

Q: Can I use integration by parts to evaluate the integral?

A: No, you cannot use integration by parts to evaluate the integral. The integral is a rational function, and it can be evaluated using the substitution method.

Q: What is the correct answer to the integral ∫4x32x+3 dx\int \frac{4x^3}{2x+3} \, dx?

A: The correct answer is x4x2+3x+C\frac{x^4}{x^2+3x}+C.

Q: How do I evaluate the integral ∫4x32x+3 dx\int \frac{4x^3}{2x+3} \, dx?

A: To evaluate the integral, you can use the substitution method. Let u=2x+3u = 2x + 3. Then, du=2dxdu = 2dx. You can rewrite the integral in terms of uu as follows:

∫4x32x+3 dx=∫4x2uβ‹…12 du\int \frac{4x^3}{2x+3} \, dx = \int \frac{4x^2}{u} \cdot \frac{1}{2} \, du

Q: What is the next step in evaluating the integral?

A: The next step is to simplify the integral by canceling out the 12\frac{1}{2} term:

∫4x2u du=∫2x2u du\int \frac{4x^2}{u} \, du = \int \frac{2x^2}{u} \, du

Q: How do I evaluate the integral ∫2x2u du\int \frac{2x^2}{u} \, du?

A: You can evaluate the integral by using the power rule of integration:

∫2x2u du=2x2u+C\int \frac{2x^2}{u} \, du = \frac{2x^2}{u} + C

Q: What is the final answer to the integral?

A: The final answer is x4x2+3x+C\frac{x^4}{x^2+3x}+C.

Q: Can I use the substitution method to evaluate the integral?

A: Yes, you can use the substitution method to evaluate the integral. Let u=2x+3u = 2x + 3. Then, du=2dxdu = 2dx. You can rewrite the integral in terms of uu as follows:

∫4x32x+3 dx=∫4x2uβ‹…12 du\int \frac{4x^3}{2x+3} \, dx = \int \frac{4x^2}{u} \cdot \frac{1}{2} \, du

Q: What is the next step in evaluating the integral using the substitution method?

A: The next step is to simplify the integral by canceling out the 12\frac{1}{2} term:

∫4x2u du=∫2x2u du\int \frac{4x^2}{u} \, du = \int \frac{2x^2}{u} \, du

Q: How do I evaluate the integral ∫2x2u du\int \frac{2x^2}{u} \, du using the substitution method?

A: You can evaluate the integral by using the power rule of integration:

∫2x2u du=2x2u+C\int \frac{2x^2}{u} \, du = \frac{2x^2}{u} + C

Q: What is