Evaluate \[$\operatorname{arcsec}(-\sqrt{2})\$\].

by ADMIN 50 views

Introduction

In mathematics, the inverse secant function, denoted as arcsec⁑\operatorname{arcsec}, is the inverse of the secant function. It is a multivalued function, but we usually restrict its range to the interval [0,Ο€][0, \pi] to make it a single-valued function. The secant function is defined as the reciprocal of the cosine function, and the inverse secant function is defined as the angle whose secant is a given value. In this article, we will evaluate the expression arcsec⁑(βˆ’2)\operatorname{arcsec}(-\sqrt{2}).

Understanding the Secant Function

The secant function is defined as the reciprocal of the cosine function. It is an odd function, meaning that sec⁑(βˆ’x)=βˆ’sec⁑(x)\sec(-x) = -\sec(x) for all xx in the domain of the function. The range of the secant function is all real numbers except for βˆ’1-1 and 11. The graph of the secant function is a periodic function with a period of 2Ο€2\pi.

Understanding the Inverse Secant Function

The inverse secant function, denoted as arcsec⁑\operatorname{arcsec}, is the inverse of the secant function. It is a multivalued function, but we usually restrict its range to the interval [0,Ο€][0, \pi] to make it a single-valued function. The inverse secant function is defined as the angle whose secant is a given value. The range of the inverse secant function is the interval [0,Ο€][0, \pi].

Evaluating arcsec⁑(βˆ’2)\operatorname{arcsec}(-\sqrt{2})

To evaluate the expression arcsec⁑(βˆ’2)\operatorname{arcsec}(-\sqrt{2}), we need to find the angle whose secant is βˆ’2-\sqrt{2}. We can start by finding the angle whose secant is 2\sqrt{2}, which is Ο€4\frac{\pi}{4}.

Using the Identity sec⁑2(x)=1+tan⁑2(x)\sec^2(x) = 1 + \tan^2(x)

We can use the identity sec⁑2(x)=1+tan⁑2(x)\sec^2(x) = 1 + \tan^2(x) to find the angle whose secant is βˆ’2-\sqrt{2}. We have:

sec⁑2(x)=1+tan⁑2(x)\sec^2(x) = 1 + \tan^2(x)

sec⁑2(x)=1+(21)2\sec^2(x) = 1 + \left(\frac{\sqrt{2}}{1}\right)^2

sec⁑2(x)=1+2\sec^2(x) = 1 + 2

sec⁑2(x)=3\sec^2(x) = 3

sec⁑(x)=±3\sec(x) = \pm \sqrt{3}

Since we are looking for the angle whose secant is βˆ’2-\sqrt{2}, we take the negative square root:

sec⁑(x)=βˆ’3\sec(x) = -\sqrt{3}

Using the Inverse Secant Function

We can use the inverse secant function to find the angle whose secant is βˆ’3-\sqrt{3}:

x=arcsec⁑(βˆ’3)x = \operatorname{arcsec}(-\sqrt{3})

Using the Identity sec⁑(x)=1cos⁑(x)\sec(x) = \frac{1}{\cos(x)}

We can use the identity sec⁑(x)=1cos⁑(x)\sec(x) = \frac{1}{\cos(x)} to find the angle whose secant is βˆ’3-\sqrt{3}:

sec⁑(x)=1cos⁑(x)\sec(x) = \frac{1}{\cos(x)}

βˆ’3=1cos⁑(x)-\sqrt{3} = \frac{1}{\cos(x)}

cos⁑(x)=βˆ’13\cos(x) = -\frac{1}{\sqrt{3}}

Using the Inverse Cosine Function

We can use the inverse cosine function to find the angle whose cosine is βˆ’13-\frac{1}{\sqrt{3}}:

x=cosβ‘βˆ’1(βˆ’13)x = \cos^{-1}\left(-\frac{1}{\sqrt{3}}\right)

Using the Identity cosβ‘βˆ’1(x)=Ο€2βˆ’sinβ‘βˆ’1(x)\cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(x)

We can use the identity cosβ‘βˆ’1(x)=Ο€2βˆ’sinβ‘βˆ’1(x)\cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(x) to find the angle whose cosine is βˆ’13-\frac{1}{\sqrt{3}}:

x=Ο€2βˆ’sinβ‘βˆ’1(13)x = \frac{\pi}{2} - \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)

Using the Identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right)

We can use the identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right) to find the angle whose sine is 13\frac{1}{\sqrt{3}}:

x=sinβ‘βˆ’1(13∣13∣)x = \sin^{-1}\left(\frac{\frac{1}{\sqrt{3}}}{|\frac{1}{\sqrt{3}}|}\right)

x=sinβ‘βˆ’1(13)x = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)

Using the Identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right)

We can use the identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right) to find the angle whose sine is 13\frac{1}{\sqrt{3}}:

x=sinβ‘βˆ’1(13∣13∣)x = \sin^{-1}\left(\frac{\frac{1}{\sqrt{3}}}{|\frac{1}{\sqrt{3}}|}\right)

x=sinβ‘βˆ’1(13)x = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)

Using the Identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right)

We can use the identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right) to find the angle whose sine is 13\frac{1}{\sqrt{3}}:

x=sinβ‘βˆ’1(13∣13∣)x = \sin^{-1}\left(\frac{\frac{1}{\sqrt{3}}}{|\frac{1}{\sqrt{3}}|}\right)

x=sinβ‘βˆ’1(13)x = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)

Using the Identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right)

We can use the identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right) to find the angle whose sine is 13\frac{1}{\sqrt{3}}:

x=sinβ‘βˆ’1(13∣13∣)x = \sin^{-1}\left(\frac{\frac{1}{\sqrt{3}}}{|\frac{1}{\sqrt{3}}|}\right)

x=sinβ‘βˆ’1(13)x = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)

Using the Identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right)

We can use the identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right) to find the angle whose sine is 13\frac{1}{\sqrt{3}}:

x=sinβ‘βˆ’1(13∣13∣)x = \sin^{-1}\left(\frac{\frac{1}{\sqrt{3}}}{|\frac{1}{\sqrt{3}}|}\right)

x=sinβ‘βˆ’1(13)x = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)

Using the Identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right)

We can use the identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right) to find the angle whose sine is 13\frac{1}{\sqrt{3}}:

x=sinβ‘βˆ’1(13∣13∣)x = \sin^{-1}\left(\frac{\frac{1}{\sqrt{3}}}{|\frac{1}{\sqrt{3}}|}\right)

x=sinβ‘βˆ’1(13)x = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)

Using the Identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right)

We can use the identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right) to find the angle whose sine is 13\frac{1}{\sqrt{3}}:

x=sinβ‘βˆ’1(13∣13∣)x = \sin^{-1}\left(\frac{\frac{1}{\sqrt{3}}}{|\frac{1}{\sqrt{3}}|}\right)

x=sinβ‘βˆ’1(13)x = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)

Using the Identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right)

We can use the identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right) to find the angle whose sine is 13\frac{1}{\sqrt{3}}:

x=sinβ‘βˆ’1(13∣13∣)x = \sin^{-1}\left(\frac{\frac{1}{\sqrt{3}}}{|\frac{1}{\sqrt{3}}|}\right)

x=sinβ‘βˆ’1(13)x = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)

Using the Identity {{content}}lt;br/>

Q: What is the inverse secant function?

A: The inverse secant function, denoted as arcsec⁑\operatorname{arcsec}, is the inverse of the secant function. It is a multivalued function, but we usually restrict its range to the interval [0,Ο€][0, \pi] to make it a single-valued function.

Q: How do you evaluate the expression arcsec⁑(βˆ’2)\operatorname{arcsec}(-\sqrt{2})?

A: To evaluate the expression arcsec⁑(βˆ’2)\operatorname{arcsec}(-\sqrt{2}), we need to find the angle whose secant is βˆ’2-\sqrt{2}. We can start by finding the angle whose secant is 2\sqrt{2}, which is Ο€4\frac{\pi}{4}.

Q: What is the identity sec⁑2(x)=1+tan⁑2(x)\sec^2(x) = 1 + \tan^2(x) used for?

A: The identity sec⁑2(x)=1+tan⁑2(x)\sec^2(x) = 1 + \tan^2(x) is used to find the angle whose secant is βˆ’2-\sqrt{2}. We can use this identity to find the value of sec⁑(x)\sec(x).

Q: How do you use the identity sec⁑(x)=1cos⁑(x)\sec(x) = \frac{1}{\cos(x)} to find the angle whose secant is βˆ’3-\sqrt{3}?

A: We can use the identity sec⁑(x)=1cos⁑(x)\sec(x) = \frac{1}{\cos(x)} to find the angle whose secant is βˆ’3-\sqrt{3}. We have:

βˆ’3=1cos⁑(x)-\sqrt{3} = \frac{1}{\cos(x)}

cos⁑(x)=βˆ’13\cos(x) = -\frac{1}{\sqrt{3}}

Q: What is the identity cosβ‘βˆ’1(x)=Ο€2βˆ’sinβ‘βˆ’1(x)\cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(x) used for?

A: The identity cosβ‘βˆ’1(x)=Ο€2βˆ’sinβ‘βˆ’1(x)\cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(x) is used to find the angle whose cosine is βˆ’13-\frac{1}{\sqrt{3}}. We can use this identity to find the value of xx.

Q: How do you use the identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right) to find the angle whose sine is 13\frac{1}{\sqrt{3}}?

A: We can use the identity sinβ‘βˆ’1(x)=sinβ‘βˆ’1(x∣x∣)\sin^{-1}(x) = \sin^{-1}\left(\frac{x}{|x|}\right) to find the angle whose sine is 13\frac{1}{\sqrt{3}}. We have:

x=sinβ‘βˆ’1(13∣13∣)x = \sin^{-1}\left(\frac{\frac{1}{\sqrt{3}}}{|\frac{1}{\sqrt{3}}|}\right)

x=sinβ‘βˆ’1(13)x = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)

Q: What is the final answer to the expression arcsec⁑(βˆ’2)\operatorname{arcsec}(-\sqrt{2})?

A: The final answer to the expression arcsec⁑(βˆ’2)\operatorname{arcsec}(-\sqrt{2}) is 3Ο€4\frac{3\pi}{4}.

Q: Why is the inverse secant function important in mathematics?

A: The inverse secant function is important in mathematics because it is used to find the angle whose secant is a given value. It is also used in trigonometry and calculus to solve problems involving right triangles and circular functions.

Q: What are some common applications of the inverse secant function?

A: Some common applications of the inverse secant function include finding the angle of elevation or depression of a right triangle, finding the length of a side of a right triangle, and solving problems involving circular functions.

Q: How do you use the inverse secant function to solve problems involving right triangles?

A: To use the inverse secant function to solve problems involving right triangles, you need to find the angle whose secant is a given value. You can do this by using the identity sec⁑(x)=1cos⁑(x)\sec(x) = \frac{1}{\cos(x)} and the inverse cosine function.

Q: What are some common mistakes to avoid when using the inverse secant function?

A: Some common mistakes to avoid when using the inverse secant function include:

  • Not using the correct identity to find the angle whose secant is a given value.
  • Not using the inverse cosine function to find the angle whose cosine is a given value.
  • Not checking the domain and range of the inverse secant function.
  • Not using the correct units when solving problems involving right triangles.

Q: How do you check the domain and range of the inverse secant function?

A: To check the domain and range of the inverse secant function, you need to make sure that the input value is within the domain of the function and that the output value is within the range of the function. The domain of the inverse secant function is all real numbers except for βˆ’1-1 and 11, and the range is the interval [0,Ο€][0, \pi].