Evaluate $\iint_R X Y \sin \left(x^2+y^2\right) \, DA$ When $R=\left[0, \sqrt{\frac{7 \pi}{6}}\right] \times\left[0, \sqrt{\frac{5 \pi}{3}}\right\].

by ADMIN 149 views

===========================================================

Introduction


In this article, we will evaluate the double integral ∬Rxysin⁑(x2+y2) dA\iint_R x y \sin \left(x^2+y^2\right) \, dA where RR is a region in the Cartesian plane. The region RR is defined as the rectangle with vertices at (0,0)(0,0), (7Ο€6,0)(\sqrt{\frac{7 \pi}{6}},0), (7Ο€6,5Ο€3)(\sqrt{\frac{7 \pi}{6}},\sqrt{\frac{5 \pi}{3}}), and (0,5Ο€3)(0,\sqrt{\frac{5 \pi}{3}}). We will use polar coordinates to evaluate this double integral.

Polar Coordinates


Polar coordinates are a way of representing points in the Cartesian plane using a distance from a reference point (the origin) and an angle from a reference direction (the positive x-axis). The polar coordinates of a point (x,y)(x,y) are given by (r,ΞΈ)(r,\theta), where rr is the distance from the origin to the point and ΞΈ\theta is the angle from the positive x-axis to the line connecting the origin to the point.

Converting to Polar Coordinates


To convert the double integral to polar coordinates, we need to express xx and yy in terms of rr and ΞΈ\theta. We have x=rcos⁑θx=r\cos\theta and y=rsin⁑θy=r\sin\theta. The region RR is a rectangle in the Cartesian plane, but it is not a simple region in polar coordinates. However, we can use the fact that the region RR is bounded by the curves x=7Ο€6x=\sqrt{\frac{7 \pi}{6}} and y=5Ο€3y=\sqrt{\frac{5 \pi}{3}} to find the limits of integration in polar coordinates.

Limits of Integration


The region RR is bounded by the curves x=7Ο€6x=\sqrt{\frac{7 \pi}{6}} and y=5Ο€3y=\sqrt{\frac{5 \pi}{3}}. In polar coordinates, the limits of integration are given by r=7Ο€6r=\sqrt{\frac{7 \pi}{6}} and ΞΈ=0\theta=0 to ΞΈ=Ο€2\theta=\frac{\pi}{2}.

Evaluating the Double Integral


Now that we have the limits of integration in polar coordinates, we can evaluate the double integral. We have:

∬Rxysin⁑(x2+y2) dA=∫0Ο€2∫07Ο€6r2sin⁑r2cos⁑θsin⁑θ dr dΞΈ\iint_R x y \sin \left(x^2+y^2\right) \, dA = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\sqrt{\frac{7 \pi}{6}}} r^2 \sin r^2 \cos \theta \sin \theta \, dr \, d\theta

Simplifying the Integral


We can simplify the integral by using the trigonometric identity sin⁑2θ=2sin⁑θcos⁑θ\sin 2\theta = 2\sin \theta \cos \theta. We have:

∬Rxysin⁑(x2+y2) dA=∫0Ο€2∫07Ο€6r2sin⁑r2sin⁑2θ dr dΞΈ\iint_R x y \sin \left(x^2+y^2\right) \, dA = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\sqrt{\frac{7 \pi}{6}}} r^2 \sin r^2 \sin 2\theta \, dr \, d\theta

Evaluating the Inner Integral


We can evaluate the inner integral by using the substitution u=r2u=r^2. We have:

∫07Ο€6r2sin⁑r2sin⁑2θ dr=∫07Ο€6sin⁑usin⁑2θ du\int_{0}^{\sqrt{\frac{7 \pi}{6}}} r^2 \sin r^2 \sin 2\theta \, dr = \int_{0}^{\frac{7 \pi}{6}} \sin u \sin 2\theta \, du

Evaluating the Outer Integral


We can evaluate the outer integral by using the substitution v=2ΞΈv=2\theta. We have:

∫0Ο€2∫07Ο€6r2sin⁑r2sin⁑2θ dr dΞΈ=∫0Ο€2∫07Ο€6sin⁑usin⁑v du dv\int_{0}^{\frac{\pi}{2}} \int_{0}^{\sqrt{\frac{7 \pi}{6}}} r^2 \sin r^2 \sin 2\theta \, dr \, d\theta = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{7 \pi}{6}} \sin u \sin v \, du \, dv

Final Evaluation


We can evaluate the final integral by using the trigonometric identity sin⁑usin⁑v=12[cos⁑(uβˆ’v)βˆ’cos⁑(u+v)]\sin u \sin v = \frac{1}{2}[\cos(u-v)-\cos(u+v)]. We have:

∬Rxysin⁑(x2+y2) dA=12∫0Ο€2∫07Ο€6[cos⁑(uβˆ’v)βˆ’cos⁑(u+v)] du dv\iint_R x y \sin \left(x^2+y^2\right) \, dA = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{7 \pi}{6}} [\cos(u-v)-\cos(u+v)] \, du \, dv

Simplifying the Final Integral


We can simplify the final integral by using the fact that the integral of cos⁑(uβˆ’v)\cos(u-v) is sin⁑(uβˆ’v)\sin(u-v) and the integral of cos⁑(u+v)\cos(u+v) is βˆ’sin⁑(u+v)-\sin(u+v). We have:

∬Rxysin⁑(x2+y2) dA=12∫0Ο€2[sin⁑(uβˆ’v)]07Ο€6 dvβˆ’12∫0Ο€2[sin⁑(u+v)]07Ο€6 dv\iint_R x y \sin \left(x^2+y^2\right) \, dA = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} [\sin(u-v)]_{0}^{\frac{7 \pi}{6}} \, dv - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} [\sin(u+v)]_{0}^{\frac{7 \pi}{6}} \, dv

Evaluating the Final Integral


We can evaluate the final integral by using the fact that the integral of sin⁑(uβˆ’v)\sin(u-v) is βˆ’cos⁑(uβˆ’v)-\cos(u-v) and the integral of sin⁑(u+v)\sin(u+v) is βˆ’cos⁑(u+v)-\cos(u+v). We have:

∬Rxysin⁑(x2+y2) dA=12[βˆ’cos⁑(7Ο€6βˆ’v)]0Ο€2+12[βˆ’cos⁑(7Ο€6+v)]0Ο€2\iint_R x y \sin \left(x^2+y^2\right) \, dA = \frac{1}{2} \left[-\cos\left(\frac{7 \pi}{6}-v\right)\right]_{0}^{\frac{\pi}{2}} + \frac{1}{2} \left[-\cos\left(\frac{7 \pi}{6}+v\right)\right]_{0}^{\frac{\pi}{2}}

Final Answer


We can simplify the final answer by using the fact that cos⁑(7Ο€6βˆ’v)=cos⁑(Ο€6+v)\cos\left(\frac{7 \pi}{6}-v\right) = \cos\left(\frac{\pi}{6}+v\right) and cos⁑(7Ο€6+v)=cos⁑(Ο€6βˆ’v)\cos\left(\frac{7 \pi}{6}+v\right) = \cos\left(\frac{\pi}{6}-v\right). We have:

∬Rxysin⁑(x2+y2) dA=12[βˆ’cos⁑(Ο€6+v)]0Ο€2+12[βˆ’cos⁑(Ο€6βˆ’v)]0Ο€2\iint_R x y \sin \left(x^2+y^2\right) \, dA = \frac{1}{2} \left[-\cos\left(\frac{\pi}{6}+v\right)\right]_{0}^{\frac{\pi}{2}} + \frac{1}{2} \left[-\cos\left(\frac{\pi}{6}-v\right)\right]_{0}^{\frac{\pi}{2}}

Final Simplification


We can simplify the final answer by using the fact that cos⁑(Ο€6+v)=cos⁑(Ο€6)cos⁑(v)βˆ’sin⁑(Ο€6)sin⁑(v)\cos\left(\frac{\pi}{6}+v\right) = \cos\left(\frac{\pi}{6}\right)\cos(v)-\sin\left(\frac{\pi}{6}\right)\sin(v) and cos⁑(Ο€6βˆ’v)=cos⁑(Ο€6)cos⁑(v)+sin⁑(Ο€6)sin⁑(v)\cos\left(\frac{\pi}{6}-v\right) = \cos\left(\frac{\pi}{6}\right)\cos(v)+\sin\left(\frac{\pi}{6}\right)\sin(v). We have:

∬Rxysin⁑(x2+y2) dA=12[βˆ’cos⁑(Ο€6)cos⁑(v)+sin⁑(Ο€6)sin⁑(v)]0Ο€2+12[βˆ’cos⁑(Ο€6)cos⁑(v)βˆ’sin⁑(Ο€6)sin⁑(v)]0Ο€2\iint_R x y \sin \left(x^2+y^2\right) \, dA = \frac{1}{2} \left[-\cos\left(\frac{\pi}{6}\right)\cos(v)+\sin\left(\frac{\pi}{6}\right)\sin(v)\right]_{0}^{\frac{\pi}{2}} + \frac{1}{2} \left[-\cos\left(\frac{\pi}{6}\right)\cos(v)-\sin\left(\frac{\pi}{6}\right)\sin(v)\right]_{0}^{\frac{\pi}{2}}

Final Answer


We can simplify the final answer by using the fact that cos⁑(Ο€6)=32\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} and sin⁑(Ο€6)=12\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}. We have:

∬Rxysin⁑(x2+y2) dA=12[βˆ’32cos⁑(v)+12sin⁑(v)]0Ο€2+12[βˆ’32cos⁑(v)βˆ’12sin⁑(v)]0Ο€2\iint_R x y \sin \left(x^2+y^2\right) \, dA = \frac{1}{2} \left[-\frac{\sqrt{3}}{2}\cos(v)+\frac{1}{2}\sin(v)\right]_{0}^{\frac{\pi}{2}} + \frac{1}{2} \left[-\frac{\sqrt{3}}{2}\cos(v)-\frac{1}{2}\sin(v)\right]_{0}^{\frac{\pi}{2}}

Final Simplification



# **Evaluating a Double Integral with Polar Coordinates: Q&A** ===========================================================

Introduction


In our previous article, we evaluated the double integral ∬Rxysin⁑(x2+y2) dA\iint_R x y \sin \left(x^2+y^2\right) \, dA where RR is a region in the Cartesian plane. The region RR is defined as the rectangle with vertices at (0,0)(0,0), (7Ο€6,0)(\sqrt{\frac{7 \pi}{6}},0), (7Ο€6,5Ο€3)(\sqrt{\frac{7 \pi}{6}},\sqrt{\frac{5 \pi}{3}}), and (0,5Ο€3)(0,\sqrt{\frac{5 \pi}{3}}). We used polar coordinates to evaluate this double integral.

Q&A


Q: What is the region R in the Cartesian plane?

A: The region RR is a rectangle with vertices at (0,0)(0,0), (7Ο€6,0)(\sqrt{\frac{7 \pi}{6}},0), (7Ο€6,5Ο€3)(\sqrt{\frac{7 \pi}{6}},\sqrt{\frac{5 \pi}{3}}), and (0,5Ο€3)(0,\sqrt{\frac{5 \pi}{3}}).

Q: Why did we use polar coordinates to evaluate the double integral?

A: We used polar coordinates to evaluate the double integral because the region RR is not a simple region in Cartesian coordinates. However, in polar coordinates, the region RR is a simple region.

Q: What are the limits of integration in polar coordinates?

A: The limits of integration in polar coordinates are given by r=7Ο€6r=\sqrt{\frac{7 \pi}{6}} and ΞΈ=0\theta=0 to ΞΈ=Ο€2\theta=\frac{\pi}{2}.

Q: How did we simplify the integral?

A: We simplified the integral by using the trigonometric identity sin⁑2θ=2sin⁑θcos⁑θ\sin 2\theta = 2\sin \theta \cos \theta.

Q: How did we evaluate the inner integral?

A: We evaluated the inner integral by using the substitution u=r2u=r^2.

Q: How did we evaluate the outer integral?

A: We evaluated the outer integral by using the substitution v=2ΞΈv=2\theta.

Q: What is the final answer?

A: The final answer is 12[βˆ’32cos⁑(v)+12sin⁑(v)]0Ο€2+12[βˆ’32cos⁑(v)βˆ’12sin⁑(v)]0Ο€2\frac{1}{2} \left[-\frac{\sqrt{3}}{2}\cos(v)+\frac{1}{2}\sin(v)\right]_{0}^{\frac{\pi}{2}} + \frac{1}{2} \left[-\frac{\sqrt{3}}{2}\cos(v)-\frac{1}{2}\sin(v)\right]_{0}^{\frac{\pi}{2}}.

Q: Can you simplify the final answer?

A: Yes, we can simplify the final answer by using the fact that cos⁑(Ο€6)=32\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} and sin⁑(Ο€6)=12\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}.

Conclusion


In this article, we evaluated the double integral ∬Rxysin⁑(x2+y2) dA\iint_R x y \sin \left(x^2+y^2\right) \, dA where RR is a region in the Cartesian plane. We used polar coordinates to evaluate this double integral and simplified the integral using various trigonometric identities. The final answer is 12[βˆ’32cos⁑(v)+12sin⁑(v)]0Ο€2+12[βˆ’32cos⁑(v)βˆ’12sin⁑(v)]0Ο€2\frac{1}{2} \left[-\frac{\sqrt{3}}{2}\cos(v)+\frac{1}{2}\sin(v)\right]_{0}^{\frac{\pi}{2}} + \frac{1}{2} \left[-\frac{\sqrt{3}}{2}\cos(v)-\frac{1}{2}\sin(v)\right]_{0}^{\frac{\pi}{2}}.

Final Answer


The final answer is 12[βˆ’32cos⁑(v)+12sin⁑(v)]0Ο€2+12[βˆ’32cos⁑(v)βˆ’12sin⁑(v)]0Ο€2\boxed{\frac{1}{2} \left[-\frac{\sqrt{3}}{2}\cos(v)+\frac{1}{2}\sin(v)\right]_{0}^{\frac{\pi}{2}} + \frac{1}{2} \left[-\frac{\sqrt{3}}{2}\cos(v)-\frac{1}{2}\sin(v)\right]_{0}^{\frac{\pi}{2}}}.