Differentiate The Function $G(x)=13 \sqrt{x} \sec X$.Answer:$G^{\prime}(x)=$
by ADMIN77 views
Differentiating the Function G(x)=13xβsecx
In this article, we will explore the process of differentiating the given function G(x)=13xβsecx. Differentiation is a fundamental concept in calculus that deals with the rate of change of a function with respect to its input. It is a crucial tool in various fields such as physics, engineering, and economics. The function G(x) is a product of two functions, xβ and secx, and we will use the product rule of differentiation to find its derivative.
The product rule of differentiation states that if we have a function of the form f(x)=u(x)v(x), where u(x) and v(x) are both functions of x, then the derivative of f(x) with respect to x is given by:
fβ²(x)=uβ²(x)v(x)+u(x)vβ²(x)
This rule can be extended to the case where we have a product of more than two functions.
Applying the Product Rule to G(x)
To find the derivative of G(x), we will apply the product rule of differentiation. We have:
G(x)=13xβsecx
We can rewrite this as:
G(x)=13x21βsecx
Now, we can identify the two functions u(x) and v(x) as:
u(x)=13x21β
v(x)=secx
We can now find the derivatives of u(x) and v(x) with respect to x:
uβ²(x)=213βxβ21β
vβ²(x)=secxtanx
Now, we can apply the product rule of differentiation to find the derivative of G(x):
Gβ²(x)=uβ²(x)v(x)+u(x)vβ²(x)
Gβ²(x)=213βxβ21βsecx+13x21βsecxtanx
We can simplify the derivative of G(x) by combining the two terms:
Gβ²(x)=213βxβ21βsecx+13x21βsecxtanx
Gβ²(x)=213βxβ21βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ21βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
G^{\prime}(<br/>
**Q&A: Differentiating the Function $G(x)=13 \sqrt{x} \sec x$**
**Q: What is the derivative of the function $G(x)=13 \sqrt{x} \sec x$?**
=============================================================
A: The derivative of the function $G(x)=13 \sqrt{x} \sec x$ is given by:
$G^{\prime}(x) = \frac{13}{2} \frac{1}{\sqrt{x}} \sec x + \frac{13}{\sqrt{x}} \sec x \tan x
A: To apply the product rule of differentiation, you need to identify the two functions u(x) and v(x) that make up the product G(x). In this case, we have:
u(x)=13x21β
v(x)=secx
You then need to find the derivatives of u(x) and v(x) with respect to x:
uβ²(x)=213βxβ21β
vβ²(x)=secxtanx
Finally, you can apply the product rule of differentiation to find the derivative of G(x):
Gβ²(x)=uβ²(x)v(x)+u(x)vβ²(x)
Gβ²(x)=213βxβ21βsecx+13x21βsecxtanx
A: Yes, you can simplify the derivative of G(x) further by combining the two terms:
Gβ²(x)=213βxβ21βsecx+xβ13βsecxtanx
Gβ²(x)=213βxβ1βsecx+xβ13βsecxtanx
A: The derivative of G(x) represents the rate of change of the function G(x) with respect to its input x. It is a fundamental concept in calculus that deals with the rate of change of a function with respect to its input.
A: The derivative of G(x) can be used in various real-world applications, such as:
Finding the maximum or minimum of a function
Determining the rate of change of a function
Solving optimization problems
Modeling real-world phenomena
A: Yes, you can use the product rule of differentiation to find the derivative of other functions that are products of two or more functions. The product rule of differentiation states that if we have a function of the form f(x)=u(x)v(x), where u(x) and v(x) are both functions of x, then the derivative of f(x) with respect to x is given by:
fβ²(x)=uβ²(x)v(x)+u(x)vβ²(x)
This rule can be extended to the case where we have a product of more than two functions.