Contour Integral With Real Poles Misconception

by ADMIN 47 views

Introduction

In complex analysis, contour integration is a powerful tool for evaluating definite integrals. However, when dealing with integrals that have real poles, there is a common misconception about the choice of contour. In this article, we will discuss the misconception and provide a clear understanding of how to approach contour integration with real poles.

The Misconception

The misconception arises from the fact that many students and even some professionals believe that the choice of contour for an integral with a real pole is arbitrary. They think that as long as the contour encloses the pole, the result will be the same. However, this is not entirely true.

The Contour Integral with Real Poles

Let's consider the integral over the real line (principal value if you prefer)

I1=dxeixx=iπI_1=\int_{-\infty}^{\infty}\mathrm d x\,\frac{e^{ix}}{x}=i\pi

This integral can be calculated from any of the two contours about 00:

C1:γ(t)=texp(iπ2),t[0,)C_1: \gamma(t)=t\exp\left(i\frac{\pi}{2}\right),\quad t\in[0,\infty)

C2:γ(t)=texp(iπ2),t[0,)C_2: \gamma(t)=t\exp\left(-i\frac{\pi}{2}\right),\quad t\in[0,\infty)

Both contours are semicircles that lie in the upper and lower half-planes, respectively.

The Residue Theorem

The residue theorem states that if a function f(z)f(z) is analytic inside and on a simple closed contour CC, except for a finite number of singularities, then

Cf(z)dz=2πik=1nRes(f,zk)\int_C f(z)\,\mathrm d z=2\pi i\sum_{k=1}^n \mathrm{Res}(f,z_k)

where zkz_k are the singularities inside the contour and Res(f,zk)\mathrm{Res}(f,z_k) are the residues at those points.

The Residue at the Pole

In our case, the function f(z)=eizzf(z)=\frac{e^{iz}}{z} has a pole at z=0z=0. The residue at this pole is given by

Res(f,0)=limz0zf(z)=limz0eiz1=1\mathrm{Res}(f,0)=\lim_{z\to 0}z\cdot f(z)=\lim_{z\to 0}\frac{e^{iz}}{1}=1

The Contour Integral

Now, let's evaluate the contour integral using the residue theorem:

C1f(z)dz=2πi1=iπ\int_{C_1} f(z)\,\mathrm d z=2\pi i\cdot 1=i\pi

C2f(z)dz=2πi1=iπ\int_{C_2} f(z)\,\mathrm d z=2\pi i\cdot 1=i\pi

As we can see, the result is the same for both contours.

The Misconception Debunked

So, what's the misconception? The misconception is that the choice of contour is arbitrary. However, as we have seen, the result depends on the contour. The contour integral with real poles is not just a matter of enclosing the pole, but also of choosing the correct contour.

The Importance of Contour Choice

The choice of contour is crucial when dealing with integrals that have real poles. A wrong choice of contour can lead to incorrect results. Therefore, it's essential to understand the properties of the function and the contour before evaluating the integral.

Conclusion

In conclusion, the contour integral with real poles is not just a simple matter of enclosing the pole. The choice of contour is crucial, and a wrong choice can lead to incorrect results. By understanding the properties of the function and the contour, we can evaluate the integral correctly and avoid the misconception.

Further Reading

For further reading on contour integration and complex analysis, we recommend the following resources:

  • Ahlfors, L. V. (1979). Complex Analysis. McGraw-Hill.
  • Churchill, R. V., & Brown, J. W. (1974). Complex Variables and Applications. McGraw-Hill.
  • Gamelin, T. W. (2001). Complex Analysis. Springer-Verlag.

References

  • Ahlfors, L. V. (1979). Complex Analysis. McGraw-Hill.
  • Churchill, R. V., & Brown, J. W. (1974). Complex Variables and Applications. McGraw-Hill.
  • Gamelin, T. W. (2001). Complex Analysis. Springer-Verlag.

Appendix

A.1 The Residue Theorem

The residue theorem states that if a function f(z)f(z) is analytic inside and on a simple closed contour CC, except for a finite number of singularities, then

Cf(z)dz=2πik=1nRes(f,zk)\int_C f(z)\,\mathrm d z=2\pi i\sum_{k=1}^n \mathrm{Res}(f,z_k)

where zkz_k are the singularities inside the contour and Res(f,zk)\mathrm{Res}(f,z_k) are the residues at those points.

A.2 The Residue at the Pole

In our case, the function f(z)=eizzf(z)=\frac{e^{iz}}{z} has a pole at z=0z=0. The residue at this pole is given by

\mathrm{Res}(f,0)=\lim_{z\to 0}z\cdot f(z)=\lim_{z\to 0}\frac{e^{iz}}{1}=1$<br/> **Contour Integral with Real Poles Misconception: Q&A** =====================================================

Q: What is the misconception about contour integration with real poles?

A: The misconception is that the choice of contour is arbitrary. Many students and even some professionals believe that as long as the contour encloses the pole, the result will be the same. However, this is not entirely true.

Q: Why is the choice of contour important?

A: The choice of contour is crucial when dealing with integrals that have real poles. A wrong choice of contour can lead to incorrect results. Therefore, it's essential to understand the properties of the function and the contour before evaluating the integral.

Q: What are the properties of the function that need to be considered?

A: The properties of the function that need to be considered are:

  • The location of the pole
  • The type of pole (simple, double, etc.)
  • The behavior of the function near the pole

Q: How do I choose the correct contour?

A: To choose the correct contour, you need to consider the following:

  • The location of the pole
  • The type of pole
  • The behavior of the function near the pole
  • The desired result (e.g., principal value, Cauchy principal value, etc.)

Q: What are the different types of contours that can be used?

A: The different types of contours that can be used are:

  • Semicircles
  • Circles
  • Rectangles
  • Ellipses

Q: How do I evaluate the contour integral?

A: To evaluate the contour integral, you need to use the residue theorem. The residue theorem states that if a function f(z)f(z) is analytic inside and on a simple closed contour CC, except for a finite number of singularities, then

\int_C f(z)\,\mathrm d z=2\pi i\sum_{k=1}^n \mathrm{Res}(f,z_k) </span></p> <p>where <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>z</mi><mi>k</mi></msub></mrow><annotation encoding="application/x-tex">z_k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.044em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> are the singularities inside the contour and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mi mathvariant="normal">R</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">s</mi></mrow><mo stretchy="false">(</mo><mi>f</mi><mo separator="true">,</mo><msub><mi>z</mi><mi>k</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{Res}(f,z_k)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathrm">Res</span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.044em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span> are the residues at those points.</p> <h2><strong>Q: What are the common mistakes to avoid when evaluating contour integrals?</strong></h2> <p>A: The common mistakes to avoid when evaluating contour integrals are:</p> <ul> <li>Choosing the wrong contour</li> <li>Not considering the properties of the function</li> <li>Not using the residue theorem correctly</li> <li>Not checking for singularities inside the contour</li> </ul> <h2><strong>Q: What are the applications of contour integration?</strong></h2> <p>A: Contour integration has many applications in physics, engineering, and mathematics, including:</p> <ul> <li>Evaluating definite integrals</li> <li>Solving differential equations</li> <li>Finding the poles of a function</li> <li>Analyzing the behavior of a function near a singularity</li> </ul> <h2><strong>Q: What are the resources for further reading on contour integration?</strong></h2> <p>A: For further reading on contour integration and complex analysis, we recommend the following resources:</p> <ul> <li>Ahlfors, L. V. (1979). Complex Analysis. McGraw-Hill.</li> <li>Churchill, R. V., &amp; Brown, J. W. (1974). Complex Variables and Applications. McGraw-Hill.</li> <li>Gamelin, T. W. (2001). Complex Analysis. Springer-Verlag.</li> </ul> <h2><strong>Conclusion</strong></h2> <p>In conclusion, contour integration with real poles is a complex topic that requires careful consideration of the properties of the function and the contour. By understanding the misconceptions and common mistakes, you can evaluate contour integrals correctly and apply the results to various fields of study.</p> <h2><strong>Further Reading</strong></h2> <p>For further reading on contour integration and complex analysis, we recommend the following resources:</p> <ul> <li>Ahlfors, L. V. (1979). Complex Analysis. McGraw-Hill.</li> <li>Churchill, R. V., &amp; Brown, J. W. (1974). Complex Variables and Applications. McGraw-Hill.</li> <li>Gamelin, T. W. (2001). Complex Analysis. Springer-Verlag.</li> </ul> <h2><strong>References</strong></h2> <ul> <li>Ahlfors, L. V. (1979). Complex Analysis. McGraw-Hill.</li> <li>Churchill, R. V., &amp; Brown, J. W. (1974). Complex Variables and Applications. McGraw-Hill.</li> <li>Gamelin, T. W. (2001). Complex Analysis. Springer-Verlag.</li> </ul> <h2><strong>Appendix</strong></h2> <h3>A.1 The Residue Theorem</h3> <p>The residue theorem states that if a function <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(z)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mclose">)</span></span></span></span> is analytic inside and on a simple closed contour <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span>, except for a finite number of singularities, then</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mo>∫</mo><mi>C</mi></msub><mi>f</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mtext> </mtext><mi mathvariant="normal">d</mi><mi>z</mi><mo>=</mo><mn>2</mn><mi>π</mi><mi>i</mi><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mrow><mi mathvariant="normal">R</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">s</mi></mrow><mo stretchy="false">(</mo><mi>f</mi><mo separator="true">,</mo><msub><mi>z</mi><mi>k</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\int_C f(z)\,\mathrm d z=2\pi i\sum_{k=1}^n \mathrm{Res}(f,z_k) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.2719em;vertical-align:-0.9119em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:-0.4336em;"><span style="top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07153em;">C</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9119em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathrm">d</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.9535em;vertical-align:-1.3021em;"></span><span class="mord">2</span><span class="mord mathnormal">πi</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8479em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.3021em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathrm">Res</span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.044em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></p> <p>where <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>z</mi><mi>k</mi></msub></mrow><annotation encoding="application/x-tex">z_k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.044em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> are the singularities inside the contour and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mi mathvariant="normal">R</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">s</mi></mrow><mo stretchy="false">(</mo><mi>f</mi><mo separator="true">,</mo><msub><mi>z</mi><mi>k</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{Res}(f,z_k)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathrm">Res</span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.044em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span> are the residues at those points.</p> <h3>A.2 The Residue at the Pole</h3> <p>In our case, the function <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><msup><mi>e</mi><mrow><mi>i</mi><mi>z</mi></mrow></msup><mi>z</mi></mfrac></mrow><annotation encoding="application/x-tex">f(z)=\frac{e^{iz}}{z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.3705em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0255em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9021em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> has a pole at <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">z=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span>. The residue at this pole is given by</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mrow><mi mathvariant="normal">R</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">s</mi></mrow><mo stretchy="false">(</mo><mi>f</mi><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><munder><mrow><mi>lim</mi><mo>⁡</mo></mrow><mrow><mi>z</mi><mo>→</mo><mn>0</mn></mrow></munder><mi>z</mi><mo>⋅</mo><mi>f</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><munder><mrow><mi>lim</mi><mo>⁡</mo></mrow><mrow><mi>z</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><msup><mi>e</mi><mrow><mi>i</mi><mi>z</mi></mrow></msup><mn>1</mn></mfrac><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\mathrm{Res}(f,0)=\lim_{z\to 0}z\cdot f(z)=\lim_{z\to 0}\frac{e^{iz}}{1}=1 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathrm">Res</span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.4115em;vertical-align:-0.7171em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.3829em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span><span class="mrel mtight">→</span><span class="mord mtight">0</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7171em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.2188em;vertical-align:-0.7171em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.3829em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span><span class="mrel mtight">→</span><span class="mord mtight">0</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7171em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5017em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span></p>