Characterization Of Crystal Structures And Degrees Of Crystallinity Hydroxyapatite Snail Shells (Babylonia Spirata) And Unam Snail Shells (Pugilina Cochlidia) As Candidates For Bone Grafts In The Field Of Periodonsia
Characterization of Crystal Structures and Degrees of Crystallinity Hydroxyapatites of Tiger Snail Shells and Unam Snail as Candidates for Bone Grafts in the Field of Periodontia
Introduction
Periodontal disease is a chronic inflammatory condition that attacks the supporting tissue of teeth, including gums, alveolar bones, and periodontal ligaments. Alveolar bone damage marks changes from gingivitis to periodontitis, which can cause teeth loss. The process of regeneration of alveolar bone damage is generally carried out using bone grafts. One of the biomaterials that is widely used as a bone graft is hydroxyapatite (HA), which is the main component that forms human bones and teeth. Its biocompatible and bioactive nature makes it ideal as a substitute for bone.
Background
HA is a calcium phosphate-based biomaterial that has been widely used in various medical applications, including bone grafting, dental implants, and tissue engineering. Its biocompatibility, bioactivity, and ability to promote bone growth make it an attractive material for bone grafting. However, the high cost and limited availability of HA have led to the exploration of alternative sources for HA synthesis.
Alternative Sources for HA Synthesis
Shells that are found in the area of North Sumatra are an alternative source for HA synthesis. Tiger Snail (Babylonia spirata) and Unam Snail (Pugilina cochlidium), two types of mollusks from the gastropod class, have thick skin rich in calcium carbonate content. This study aims to analyze the crystal structure and the degree of crystallinity obtained from the Tiger Snail Shell and Unam Snail as a candidate for bone grafts.
Methodology
This research is a pre-experimental study with the design of One Shot Case Study. The shells of Tiger Snail and Unam Snail were synthesized by the precipitation method and characterized using X-Ray Diffractometer (XRD). The results of XRD analysis show that both types of shells contain HA with hexagonal crystal structures and have a fairly good degree of crystallinity.
Why Does the Snail Shell Have the Potential to be a Bone Graft Material?
The snail shell has the potential to be a bone graft material due to several reasons:
- Appropriate Crystal Structure: The HA crystal structure found in a snail shell is similar to the HA crystal structure in human bones. This ensures biocompatibility and integration of graft materials with original bones.
- High Degree of Crystallinity: A high degree of crystallinity indicates that HA crystals in the snail shell have a regular and sturdy structure. This is important to ensure the strength and stability of bone grafts.
- Renewable Resources: Snail shells are abundant and renewable natural resources. This makes the use of a snail shell as a bone shell more environmentally friendly and sustainable.
Conclusion
The results showed that the Tiger Snail Shell and Unam snail had great potential as a bone graft material. The appropriate crystal structure and a good degree of crystallinity make the snail shell worthy of further investigation as a safe, effective, and environmentally friendly bone graft.
Future Directions
It is essential to note that this research is the first step in the development of bone shell material from a snail shell. Further research is needed to optimize the synthesis process of HA from the snail shell and evaluate its safety and effectiveness in clinical applications.
Implications
The use of snail shells as a bone graft material has several implications:
- Environmental Sustainability: The use of snail shells as a bone graft material is more environmentally friendly and sustainable compared to traditional HA synthesis methods.
- Cost-Effectiveness: The use of snail shells as a bone graft material can reduce the cost of HA synthesis and make it more accessible to patients.
- Biocompatibility: The use of snail shells as a bone graft material ensures biocompatibility and integration of graft materials with original bones.
Limitations
This study has several limitations:
- Small Sample Size: The study only analyzed two types of snail shells, which may not be representative of all snail shells.
- Limited Clinical Data: The study did not evaluate the safety and effectiveness of snail shell-based bone grafts in clinical applications.
- Optimization of Synthesis Process: The study did not optimize the synthesis process of HA from snail shells, which may affect the quality and consistency of the final product.
Future Research Directions
Future research should focus on:
- Optimizing the Synthesis Process: Optimizing the synthesis process of HA from snail shells to improve the quality and consistency of the final product.
- Evaluating Safety and Effectiveness: Evaluating the safety and effectiveness of snail shell-based bone grafts in clinical applications.
- Comparing with Traditional HA: Comparing the performance of snail shell-based bone grafts with traditional HA-based bone grafts.
Q&A: Characterization of Crystal Structures and Degrees of Crystallinity Hydroxyapatites of Tiger Snail Shells and Unam Snail as Candidates for Bone Grafts in the Field of Periodontia
Frequently Asked Questions
Q: What is the main purpose of this study?
A: The main purpose of this study is to analyze the crystal structure and the degree of crystallinity obtained from the Tiger Snail Shell and Unam Snail as a candidate for bone grafts.
Q: Why are snail shells considered as a potential source for HA synthesis?
A: Snail shells are considered as a potential source for HA synthesis because they are abundant and renewable natural resources, and they have a high content of calcium carbonate, which is a key component of HA.
Q: What is the significance of the crystal structure of HA in snail shells?
A: The crystal structure of HA in snail shells is significant because it is similar to the HA crystal structure in human bones, which ensures biocompatibility and integration of graft materials with original bones.
Q: What is the degree of crystallinity, and why is it important?
A: The degree of crystallinity refers to the regularity and stability of the HA crystals in the snail shell. A high degree of crystallinity is important because it ensures the strength and stability of bone grafts.
Q: What are the advantages of using snail shells as a bone graft material?
A: The advantages of using snail shells as a bone graft material include biocompatibility, bioactivity, and the ability to promote bone growth, as well as being environmentally friendly and sustainable.
Q: What are the limitations of this study?
A: The limitations of this study include a small sample size, limited clinical data, and the need to optimize the synthesis process of HA from snail shells.
Q: What are the future research directions for this study?
A: The future research directions for this study include optimizing the synthesis process of HA from snail shells, evaluating the safety and effectiveness of snail shell-based bone grafts in clinical applications, and comparing the performance of snail shell-based bone grafts with traditional HA-based bone grafts.
Q: What are the implications of this study for the field of periodontia?
A: The implications of this study for the field of periodontia include the potential for a new and sustainable source of HA for bone grafting, as well as the possibility of developing more effective and environmentally friendly bone graft materials.
Q: What are the potential applications of this study?
A: The potential applications of this study include the development of new bone graft materials for periodontal surgery, as well as the potential for snail shells to be used as a source of HA for other medical applications.
Additional Resources
For more information on this study, please refer to the following resources:
- [1] A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A