Calculate Δ G Rxn \Delta G_{\text{rxn}} Δ G Rxn ​ For This Equation, Rounding Your Answer To The Nearest Whole Number.$[ \begin{array}{l} 2 , \text{N}_2(g) + \text{O}_2(g) \rightarrow 2 , \text{N} 2\text{O}(g) \ \Delta H {\text{rxn}} = 163.2 ,

by ADMIN 244 views

Introduction

In chemistry, the calculation of ΔGrxn\Delta G_{\text{rxn}} (Gibbs free energy change) is a crucial step in understanding the spontaneity of a reaction. The Gibbs free energy change is a measure of the energy change that occurs during a reaction, taking into account the enthalpy change (ΔHrxn\Delta H_{\text{rxn}}), entropy change (ΔSrxn\Delta S_{\text{rxn}}), and temperature (TT). In this article, we will calculate ΔGrxn\Delta G_{\text{rxn}} for the nitrogen dioxide reaction, which is given by the equation:

2N2(g)+O2(g)2N2O(g)2 \, \text{N}_2(g) + \text{O}_2(g) \rightarrow 2 \, \text{N}_2\text{O}(g)

Given Information

The given information for this reaction is:

  • ΔHrxn=163.2kJ/mol\Delta H_{\text{rxn}} = 163.2 \, \text{kJ/mol}
  • T=298KT = 298 \, \text{K} (standard temperature)
  • ΔSrxn\Delta S_{\text{rxn}} is not given, but we will calculate it using the standard entropy values of the reactants and products.

Calculating ΔSrxn\Delta S_{\text{rxn}}

To calculate ΔSrxn\Delta S_{\text{rxn}}, we need to know the standard entropy values of the reactants and products. The standard entropy values are given in units of J/mol·K. We will use the following values:

  • ΔS(N2(g))=191.5J/mol\cdotpK\Delta S^{\circ}(\text{N}_2(g)) = 191.5 \, \text{J/mol·K}
  • ΔS(O2(g))=205.0J/mol\cdotpK\Delta S^{\circ}(\text{O}_2(g)) = 205.0 \, \text{J/mol·K}
  • ΔS(N2O(g))=215.1J/mol\cdotpK\Delta S^{\circ}(\text{N}_2\text{O}(g)) = 215.1 \, \text{J/mol·K}

Using the formula for ΔSrxn\Delta S_{\text{rxn}}, we get:

ΔSrxn=ΔS(products)ΔS(reactants)\Delta S_{\text{rxn}} = \sum \Delta S^{\circ}(\text{products}) - \sum \Delta S^{\circ}(\text{reactants})

ΔSrxn=2×215.1J/mol\cdotpK(2×191.5J/mol\cdotpK+205.0J/mol\cdotpK)\Delta S_{\text{rxn}} = 2 \times 215.1 \, \text{J/mol·K} - (2 \times 191.5 \, \text{J/mol·K} + 205.0 \, \text{J/mol·K})

ΔSrxn=430.2J/mol\cdotpK487.0J/mol\cdotpK\Delta S_{\text{rxn}} = 430.2 \, \text{J/mol·K} - 487.0 \, \text{J/mol·K}

ΔSrxn=56.8J/mol\cdotpK\Delta S_{\text{rxn}} = -56.8 \, \text{J/mol·K}

Calculating ΔGrxn\Delta G_{\text{rxn}}

Now that we have the values of ΔHrxn\Delta H_{\text{rxn}} and ΔSrxn\Delta S_{\text{rxn}}, we can calculate ΔGrxn\Delta G_{\text{rxn}} using the formula:

ΔGrxn=ΔHrxnTΔSrxn\Delta G_{\text{rxn}} = \Delta H_{\text{rxn}} - T \Delta S_{\text{rxn}}

ΔGrxn=163.2kJ/mol(298K)(56.8J/mol\cdotpK)\Delta G_{\text{rxn}} = 163.2 \, \text{kJ/mol} - (298 \, \text{K}) (-56.8 \, \text{J/mol·K})

ΔGrxn=163.2kJ/mol+16.96kJ/mol\Delta G_{\text{rxn}} = 163.2 \, \text{kJ/mol} + 16.96 \, \text{kJ/mol}

ΔGrxn=180.16kJ/mol\Delta G_{\text{rxn}} = 180.16 \, \text{kJ/mol}

Rounding the Answer

The problem asks us to round our answer to the nearest whole number. Therefore, we round ΔGrxn\Delta G_{\text{rxn}} to the nearest whole number:

ΔGrxn=180kJ/mol\Delta G_{\text{rxn}} = 180 \, \text{kJ/mol}

Conclusion

Q: What is the significance of calculating ΔGrxn\Delta G_{\text{rxn}} for a reaction?

A: Calculating ΔGrxn\Delta G_{\text{rxn}} is crucial in understanding the spontaneity of a reaction. A negative ΔGrxn\Delta G_{\text{rxn}} value indicates a spontaneous reaction, while a positive value indicates a non-spontaneous reaction.

Q: What is the formula for calculating ΔGrxn\Delta G_{\text{rxn}}?

A: The formula for calculating ΔGrxn\Delta G_{\text{rxn}} is:

ΔGrxn=ΔHrxnTΔSrxn\Delta G_{\text{rxn}} = \Delta H_{\text{rxn}} - T \Delta S_{\text{rxn}}

Q: What is the difference between ΔHrxn\Delta H_{\text{rxn}} and ΔGrxn\Delta G_{\text{rxn}}?

A: ΔHrxn\Delta H_{\text{rxn}} is the enthalpy change of a reaction, which is a measure of the energy change that occurs during a reaction. ΔGrxn\Delta G_{\text{rxn}} is the Gibbs free energy change of a reaction, which takes into account the enthalpy change, entropy change, and temperature.

Q: How do you calculate ΔSrxn\Delta S_{\text{rxn}}?

A: To calculate ΔSrxn\Delta S_{\text{rxn}}, you need to know the standard entropy values of the reactants and products. You can use the formula:

ΔSrxn=ΔS(products)ΔS(reactants)\Delta S_{\text{rxn}} = \sum \Delta S^{\circ}(\text{products}) - \sum \Delta S^{\circ}(\text{reactants})

Q: What is the standard entropy value of a gas?

A: The standard entropy value of a gas is typically given in units of J/mol·K. For example, the standard entropy value of nitrogen gas (N2) is 191.5 J/mol·K.

Q: Can you give an example of how to calculate ΔGrxn\Delta G_{\text{rxn}} using the formula?

A: Yes, let's use the example of the nitrogen dioxide reaction:

2N2(g)+O2(g)2N2O(g)2 \, \text{N}_2(g) + \text{O}_2(g) \rightarrow 2 \, \text{N}_2\text{O}(g)

Given:

  • ΔHrxn=163.2kJ/mol\Delta H_{\text{rxn}} = 163.2 \, \text{kJ/mol}
  • T=298KT = 298 \, \text{K}
  • ΔSrxn=56.8J/mol\cdotpK\Delta S_{\text{rxn}} = -56.8 \, \text{J/mol·K}

Using the formula:

ΔGrxn=ΔHrxnTΔSrxn\Delta G_{\text{rxn}} = \Delta H_{\text{rxn}} - T \Delta S_{\text{rxn}}

ΔGrxn=163.2kJ/mol(298K)(56.8J/mol\cdotpK)\Delta G_{\text{rxn}} = 163.2 \, \text{kJ/mol} - (298 \, \text{K}) (-56.8 \, \text{J/mol·K})

ΔGrxn=163.2kJ/mol+16.96kJ/mol\Delta G_{\text{rxn}} = 163.2 \, \text{kJ/mol} + 16.96 \, \text{kJ/mol}

ΔGrxn=180.16kJ/mol\Delta G_{\text{rxn}} = 180.16 \, \text{kJ/mol}

Q: What is the final answer for ΔGrxn\Delta G_{\text{rxn}}?

A: The final answer for ΔGrxn\Delta G_{\text{rxn}} is 180 kJ/mol.

Q: Can you summarize the key points of calculating ΔGrxn\Delta G_{\text{rxn}}?

A: Yes, the key points of calculating ΔGrxn\Delta G_{\text{rxn}} are:

  • Calculate ΔHrxn\Delta H_{\text{rxn}} and ΔSrxn\Delta S_{\text{rxn}}
  • Use the formula: ΔGrxn=ΔHrxnTΔSrxn\Delta G_{\text{rxn}} = \Delta H_{\text{rxn}} - T \Delta S_{\text{rxn}}
  • Take into account the standard entropy values of the reactants and products
  • Round the answer to the nearest whole number