Apply The Change Of Base Formula To Evaluate The Following Expressions:1. $\log_{\frac{1}{5}} 2$2. $\log_{\frac{1}{2}} 3$3. $\log_2 \frac{1}{3}$4. $\log_3 \frac{1}{2}$

by ADMIN 168 views

Introduction

The change of base formula is a fundamental concept in mathematics, particularly in the field of logarithms. It allows us to express a logarithm in terms of another base, making it easier to evaluate and manipulate logarithmic expressions. In this article, we will apply the change of base formula to evaluate four different logarithmic expressions.

What is the Change of Base Formula?

The change of base formula is given by:

log⁑ba=log⁑calog⁑cb\log_b a = \frac{\log_c a}{\log_c b}

where aa, bb, and cc are positive real numbers, and c≠1c \neq 1. This formula allows us to express a logarithm in terms of another base, cc.

Applying the Change of Base Formula to Evaluate Logarithmic Expressions

1. Evaluating log⁑152\log_{\frac{1}{5}} 2

To evaluate log⁑152\log_{\frac{1}{5}} 2, we can use the change of base formula with a=2a = 2, b=15b = \frac{1}{5}, and c=10c = 10.

log⁑152=log⁑102log⁑1015\log_{\frac{1}{5}} 2 = \frac{\log_{10} 2}{\log_{10} \frac{1}{5}}

Using a calculator, we can evaluate the logarithms:

log⁑102β‰ˆ0.3010\log_{10} 2 \approx 0.3010

log⁑1015=βˆ’log⁑105β‰ˆβˆ’0.69897\log_{10} \frac{1}{5} = -\log_{10} 5 \approx -0.69897

Therefore,

log⁑152β‰ˆ0.3010βˆ’0.69897β‰ˆβˆ’0.4304\log_{\frac{1}{5}} 2 \approx \frac{0.3010}{-0.69897} \approx -0.4304

2. Evaluating log⁑123\log_{\frac{1}{2}} 3

To evaluate log⁑123\log_{\frac{1}{2}} 3, we can use the change of base formula with a=3a = 3, b=12b = \frac{1}{2}, and c=10c = 10.

log⁑123=log⁑103log⁑1012\log_{\frac{1}{2}} 3 = \frac{\log_{10} 3}{\log_{10} \frac{1}{2}}

Using a calculator, we can evaluate the logarithms:

log⁑103β‰ˆ0.4771\log_{10} 3 \approx 0.4771

log⁑1012=βˆ’log⁑102β‰ˆβˆ’0.3010\log_{10} \frac{1}{2} = -\log_{10} 2 \approx -0.3010

Therefore,

log⁑123β‰ˆ0.4771βˆ’0.3010β‰ˆβˆ’1.5857\log_{\frac{1}{2}} 3 \approx \frac{0.4771}{-0.3010} \approx -1.5857

3. Evaluating log⁑213\log_2 \frac{1}{3}

To evaluate log⁑213\log_2 \frac{1}{3}, we can use the change of base formula with a=13a = \frac{1}{3}, b=2b = 2, and c=10c = 10.

log⁑213=log⁑1013log⁑102\log_2 \frac{1}{3} = \frac{\log_{10} \frac{1}{3}}{\log_{10} 2}

Using a calculator, we can evaluate the logarithms:

log⁑1013=βˆ’log⁑103β‰ˆβˆ’0.4771\log_{10} \frac{1}{3} = -\log_{10} 3 \approx -0.4771

log⁑102β‰ˆ0.3010\log_{10} 2 \approx 0.3010

Therefore,

log⁑213β‰ˆβˆ’0.47710.3010β‰ˆβˆ’1.5857\log_2 \frac{1}{3} \approx \frac{-0.4771}{0.3010} \approx -1.5857

4. Evaluating log⁑312\log_3 \frac{1}{2}

To evaluate log⁑312\log_3 \frac{1}{2}, we can use the change of base formula with a=12a = \frac{1}{2}, b=3b = 3, and c=10c = 10.

log⁑312=log⁑1012log⁑103\log_3 \frac{1}{2} = \frac{\log_{10} \frac{1}{2}}{\log_{10} 3}

Using a calculator, we can evaluate the logarithms:

log⁑1012=βˆ’log⁑102β‰ˆβˆ’0.3010\log_{10} \frac{1}{2} = -\log_{10} 2 \approx -0.3010

log⁑103β‰ˆ0.4771\log_{10} 3 \approx 0.4771

Therefore,

log⁑312β‰ˆβˆ’0.30100.4771β‰ˆβˆ’0.6304\log_3 \frac{1}{2} \approx \frac{-0.3010}{0.4771} \approx -0.6304

Conclusion

In this article, we applied the change of base formula to evaluate four different logarithmic expressions. We used the formula to express each logarithm in terms of a common base, c=10c = 10, and then evaluated the resulting expressions using a calculator. The results show that the change of base formula is a powerful tool for evaluating logarithmic expressions.

References

Additional Resources