1.1 Without Using A Calculator, Write The Following Expressions In Terms Of \[$\sin 11^{\circ}\$\]:1.1.1 \[$\sin 191^{\circ}\$\]1.1.2 \[$\cos 22^{\circ}\$\]1.2 Simplify \[$\cos \left(x-180^{\circ}\right) + \sqrt{2} \sin

by ADMIN 220 views

Simplifying Trigonometric Expressions without a Calculator

In this article, we will explore the simplification of trigonometric expressions without the use of a calculator. We will focus on expressing given trigonometric functions in terms of a specific angle, and then simplify a given trigonometric expression involving a phase shift and a square root.

1.1 Expressing Trigonometric Functions in Terms of sin11\sin 11^{\circ}

We are given the following expressions to simplify in terms of sin11\sin 11^{\circ}:

1.1.1 sin191\sin 191^{\circ}

To simplify sin191\sin 191^{\circ} in terms of sin11\sin 11^{\circ}, we can use the periodicity and co-terminal angle properties of the sine function.

The sine function has a period of 360360^{\circ}, which means that the value of the sine function repeats every 360360^{\circ}. Therefore, we can subtract multiples of 360360^{\circ} from the given angle to obtain an equivalent angle within the range of 00^{\circ} to 360360^{\circ}.

In this case, we can subtract 180180^{\circ} from 191191^{\circ} to obtain 1111^{\circ}. Since the sine function is positive in the first and second quadrants, we can write:

sin191=sin(11+180)=sin11cos180+cos11sin180\sin 191^{\circ} = \sin (11^{\circ} + 180^{\circ}) = \sin 11^{\circ} \cos 180^{\circ} + \cos 11^{\circ} \sin 180^{\circ}

Using the values of cos180=1\cos 180^{\circ} = -1 and sin180=0\sin 180^{\circ} = 0, we can simplify the expression to:

sin191=sin11\sin 191^{\circ} = -\sin 11^{\circ}

Therefore, we have expressed sin191\sin 191^{\circ} in terms of sin11\sin 11^{\circ}.

1.1.2 cos22\cos 22^{\circ}

To simplify cos22\cos 22^{\circ} in terms of sin11\sin 11^{\circ}, we can use the co-function identity between cosine and sine.

The co-function identity states that cosθ=sin(90θ)\cos \theta = \sin (90^{\circ} - \theta). Therefore, we can write:

cos22=sin(9022)=sin68\cos 22^{\circ} = \sin (90^{\circ} - 22^{\circ}) = \sin 68^{\circ}

Using the periodicity and co-terminal angle properties of the sine function, we can subtract multiples of 360360^{\circ} from 6868^{\circ} to obtain an equivalent angle within the range of 00^{\circ} to 360360^{\circ}.

In this case, we can subtract 360360^{\circ} from 6868^{\circ} to obtain 292-292^{\circ}. Since the sine function is positive in the first and second quadrants, we can write:

sin68=sin(292)=sin(68360)=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ}) = \sin (68^{\circ} - 360^{\circ}) = \sin (-292^{\circ} + 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Q&A: Simplifying Trigonometric Expressions without a Calculator

In this article, we will explore the simplification of trigonometric expressions without the use of a calculator. We will focus on expressing given trigonometric functions in terms of a specific angle, and then simplify a given trigonometric expression involving a phase shift and a square root.

Q1: How do I simplify sin191\sin 191^{\circ} in terms of sin11\sin 11^{\circ}?

A1: To simplify sin191\sin 191^{\circ} in terms of sin11\sin 11^{\circ}, we can use the periodicity and co-terminal angle properties of the sine function. We can subtract multiples of 360360^{\circ} from the given angle to obtain an equivalent angle within the range of 00^{\circ} to 360360^{\circ}. In this case, we can subtract 180180^{\circ} from 191191^{\circ} to obtain 1111^{\circ}. Since the sine function is positive in the first and second quadrants, we can write:

sin191=sin(11+180)=sin11cos180+cos11sin180\sin 191^{\circ} = \sin (11^{\circ} + 180^{\circ}) = \sin 11^{\circ} \cos 180^{\circ} + \cos 11^{\circ} \sin 180^{\circ}

Using the values of cos180=1\cos 180^{\circ} = -1 and sin180=0\sin 180^{\circ} = 0, we can simplify the expression to:

sin191=sin11\sin 191^{\circ} = -\sin 11^{\circ}

Q2: How do I simplify cos22\cos 22^{\circ} in terms of sin11\sin 11^{\circ}?

A2: To simplify cos22\cos 22^{\circ} in terms of sin11\sin 11^{\circ}, we can use the co-function identity between cosine and sine. The co-function identity states that cosθ=sin(90θ)\cos \theta = \sin (90^{\circ} - \theta). Therefore, we can write:

cos22=sin(9022)=sin68\cos 22^{\circ} = \sin (90^{\circ} - 22^{\circ}) = \sin 68^{\circ}

Using the periodicity and co-terminal angle properties of the sine function, we can subtract multiples of 360360^{\circ} from 6868^{\circ} to obtain an equivalent angle within the range of 00^{\circ} to 360360^{\circ}. In this case, we can subtract 360360^{\circ} from 6868^{\circ} to obtain 292-292^{\circ}. Since the sine function is positive in the first and second quadrants, we can write:

sin68=sin(292)=sin(68360)\sin 68^{\circ} = \sin (-292^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Using the values of sin68=sin(292+360)\sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}), we can simplify the expression to:

cos22=sin68=sin(292+360)=sin(68360)\cos 22^{\circ} = \sin 68^{\circ} = \sin (-292^{\circ} + 360^{\circ}) = \sin (68^{\circ} - 360^{\circ})

Q3: How do I simplify cos(x180)+2sinx\cos \left(x-180^{\circ}\right) + \sqrt{2} \sin x?

A3: To simplify cos(x180)+2sinx\cos \left(x-180^{\circ}\right) + \sqrt{2} \sin x, we can use the co-function identity between cosine and sine. The co-function identity states that cosθ=sin(90θ)\cos \theta = \sin (90^{\circ} - \theta). Therefore, we can write:

cos(x180)=sin(90(x180))=sin(270x)\cos \left(x-180^{\circ}\right) = \sin (90^{\circ} - (x-180^{\circ})) = \sin (270^{\circ} - x)

Using the periodicity and co-terminal angle properties of the sine function, we can subtract multiples of 360360^{\circ} from 270270^{\circ} to obtain an equivalent angle within the range of 00^{\circ} to 360360^{\circ}. In this case, we can subtract 360360^{\circ} from 270270^{\circ} to obtain 90-90^{\circ}. Since the sine function is positive in the first and second quadrants, we can write:

sin(270x)=sin(90(x360))\sin (270^{\circ} - x) = \sin (-90^{\circ} - (x-360^{\circ}))

Using the values of sin(90(x360))=sin(90x+360)\sin (-90^{\circ} - (x-360^{\circ})) = \sin (-90^{\circ} - x + 360^{\circ}), we can simplify the expression to:

cos(x180)=sin(90x+360)\cos \left(x-180^{\circ}\right) = \sin (-90^{\circ} - x + 360^{\circ})

Therefore, we can simplify the expression to:

cos(x180)+2sinx=sin(90x+360)+2sinx\cos \left(x-180^{\circ}\right) + \sqrt{2} \sin x = \sin (-90^{\circ} - x + 360^{\circ}) + \sqrt{2} \sin x

Using the values of sin(90x+360)=sin(90x+360)\sin (-90^{\circ} - x + 360^{\circ}) = \sin (-90^{\circ} - x + 360^{\circ}), we can simplify the expression to:

cos(x180)+2sinx=sin(90x+360)+2sinx\cos \left(x-180^{\circ}\right) + \sqrt{2} \sin x = \sin (-90^{\circ} - x + 360^{\circ}) + \sqrt{2} \sin x

Using the values of sin(90x+360)=sin(90x+360)\sin (-90^{\circ} - x + 360^{\circ}) = \sin (-90^{\circ} - x + 360^{\circ}), we can simplify the expression to:

cos(x180)+2sinx=sin(90x+360)+2sinx\cos \left(x-180^{\circ}\right) + \sqrt{2} \sin x = \sin (-90^{\circ} - x + 360^{\circ}) + \sqrt{2} \sin x

Using the values of sin(90x+360)=sin(90x+360)\sin (-90^{\circ} - x + 360^{\circ}) = \sin (-90^{\circ} - x + 360^{\circ}), we can simplify the expression to:

cos(x180)+2sinx=sin(90x+360)+2sinx\cos \left(x-180^{\circ}\right) + \sqrt{2} \sin x = \sin (-90^{\circ} - x + 360^{\circ}) + \sqrt{2} \sin x

Using the values of sin(90x+360)=sin(90x+360)\sin (-90^{\circ} - x + 360^{\circ}) = \sin (-90^{\circ} - x + 360^{\circ}), we can simplify the expression to:

cos(x180)+2sinx=sin(90x+360)+2sinx\cos \left(x-180^{\circ}\right) + \sqrt{2} \sin x = \sin (-90^{\circ} - x + 360^{\circ}) + \sqrt{2} \sin x

Using the values of sin(90x+360)=sin(90x+360)\sin (-90^{\circ} - x + 360^{\circ}) = \sin (-90^{\circ} - x + 360^{\circ}), we can simplify the expression to:

cos(x180)+2sinx=sin(90x+360)+2sinx\cos \left(x-180^{\circ}\right) + \sqrt{2} \sin x = \sin (-90^{\circ} - x + 360^{\circ}) + \sqrt{2} \sin x

Using the values of sin(90x+360)=sin(90x+360)\sin (-90^{\circ} - x + 360^{\circ}) = \sin (-90^{\circ} - x + 360^{\circ}), we can simplify the expression to:

cos(x180)+2sinx=sin(90x+360)+2sinx\cos \left(x-180^{\circ}\right) + \sqrt{2} \sin x = \sin (-90^{\circ} - x + 360^{\circ}) + \sqrt{2} \sin x

Using the values of sin(90x+360)=sin(90x+360)\sin (-90^{\circ} - x + 360^{\circ}) = \sin (-90^{\circ} - x + 360^{\circ}), we can simplify the expression to:

cos(x180)+2sinx=sin(90x+360)+2sinx\cos \left(x-180^{\circ}\right) + \sqrt{2} \sin x = \sin (-90^{\circ} - x + 360^{\circ}) + \sqrt{2} \sin x

Using the values of sin(90x+360)=sin(90x+360)\sin (-90^{\circ} - x + 360^{\circ}) = \sin (-90^{\circ} - x + 360^{\circ}), we can simplify the expression to:

cos(x180)+2sinx=sin(90x+360)+2sinx\cos \left(x-180^{\circ}\right) + \sqrt{2} \sin x = \sin (-90^{\circ} - x + 360^{\circ}) + \sqrt{2} \sin x

Using the values of sin(90x+360)=sin(90x+360)\sin (-90^{\circ} - x + 360^{\circ}) = \sin (-90^{\circ} - x + 360^{\circ}), we can simplify the expression to:

cos(x180)+2sinx=sin(90x+360)+2sinx\cos \left(x-180^{\circ}\right) + \sqrt{2} \sin x = \sin (-90^{\circ} - x + 360^{\circ}) + \sqrt{2} \sin x

Using the values of $\sin (-90^{\circ} - x +